特征选择与PCA用于心脏病预测模型分类 心脏病是全球最主要的致死原因之一,根据世界卫生组织(WHO)的报告,每年有1790万人死亡。由于导致超重和肥胖、高血压、高血糖血症和高胆固醇的不良行为,心脏病的风险增加。为了改善患者诊断,医疗保健行业越来越多地使用计算机技术和机器学习技术。 机器学习是一种分析工具,用于任务规模大、难以规划的情况,如将医疗记录转化为知识、大流行预测和基因组数据分析。近年来,机器学习技术在心脏病预测和诊断方面的应用日益广泛。研究人员使用机器学习技术来分类和预测不同的心脏问题,并取得了不错的成果。 本文提出了一种降维方法,通过应用特征选择技术来发现心脏病的特征,并使用PCA降维方法来提高预测模型的准确率。该研究使用UCI机器学习库中的心脏病数据集,包含74个特征和一个标签。通过ifX ML分类器进行验证,随机森林(RF)的卡方和主成分分析(CHI-PCA)具有最高的准确率,克利夫兰数据集为98.7%,匈牙利数据集为99.0%,克利夫兰-匈牙利(CH)数据集为99.4%。 特征选择是机器学习技术中的一种重要技术,用于删除无用特征,减少数据维度,并提高算法的性能。在心脏病预测方面,特征选择技术可以用于选择与心脏病相关的特征,如胆固醇、最高心率、胸痛、ST抑郁症相关特征和心血管等。 PCA是一种常用的降维方法,通过将高维数据降低到低维数据,提高数据处理的效率和准确率。在心脏病预测方面,PCA可以用于降低数据维度,提高预测模型的准确率。 此外,本文还讨论了机器学习技术在心脏病预测和诊断方面的应用,如Melillo等人的研究使用机器学习技术对充血性心力衰竭(CHF)患者进行自动分类,Rahhal等人的研究使用深度神经网络(DNN)分类心电图(ECG)信号,Guidi等人的研究使用临床决策支持系统(CDSS)对心力衰竭(HF)进行分析。 本文提出了一种结合特征选择和PCA的降维方法,用于心脏病预测模型分类,并取得了不错的成果。机器学习技术在心脏病预测和诊断方面的应用日益广泛,特征选择和PCA降维方法将在心脏病预测和诊断方面发挥着越来越重要的作用。
2025-05-21 10:53:54 1.17MB 医学信息学
1
基于MATLAB的水果识别系统GUI:特征选择与分类方法自定义的智能化识别工具,基于MATLAB的水果识别系统GUI:自定义特征与分类方法选择,基于MATLAB的水果识别系统GUI 特征可选 分类方法可选 ,基于MATLAB的水果识别系统GUI; 特征可选; 分类方法可选,基于MATLAB的水果识别系统:特征与分类方法可选的GUI设计 在当前的科技领域,随着人工智能和计算机视觉技术的快速发展,基于图像识别的系统逐渐成为研究热点。特别是在日常生活中的水果识别方面,借助于先进的图形用户界面(GUI)技术,已经开发出了一系列智能化的识别工具。这些工具能够帮助用户通过简单的操作,实现对不同种类水果的准确识别。 以MATLAB为开发平台的水果识别系统,通过GUI设计,不仅提供了丰富的特征选择,还允许用户自定义分类方法。这样的设计让系统具备了高度的灵活性和智能化水平,用户可以根据实际需要选择最合适的特征和分类算法,以达到最佳的识别效果。例如,系统可能提供了颜色、形状、纹理等多种特征选择,同时用户也可以选择支持向量机(SVM)、神经网络、决策树等不同的分类策略。 在设计与实现这样的系统时,技术分析和引言部分通常是不可或缺的。文档中可能包含了对系统整体架构的描述、功能模块的详细介绍以及技术难点的探讨。此外,系统的设计往往需要对人工智能和计算机视觉理论有深入的理解,包括但不限于图像处理、模式识别、特征提取等领域。 为了确保系统的实用性和准确性,研究人员会在设计阶段进行大量的技术分析。这包括分析不同水果的特点、对比现有的图像识别算法、评估特征选择对分类效果的影响等。这些分析工作有助于指导后续的系统实现,确保所开发的GUI能够在实际应用中达到预期的识别准确率和用户友好性。 系统的设计文档中,还会详细介绍如何集成和优化这些技术,以及如何通过图形用户界面进行操作。在用户与GUI互动的过程中,系统需要能够高效地处理用户输入的图像数据,自动提取特征,执行分类操作,并快速给出识别结果。整个过程中,系统的响应时间、识别准确率、易用性都是设计者需要关注的重点。 此外,由于实际应用中可能会遇到各种不同的水果和多变的环境条件,系统的鲁棒性和适应性也是研发过程中需要不断优化的方向。通过剪枝等方法,可以减少特征维度,提高分类器的性能。文档中可能还包含了一些关于如何进行系统测试和评估的内容,以确保系统的实用价值和可靠性。 基于MATLAB的水果识别系统GUI是一个集成了图像处理、模式识别和用户交互的高级技术应用。它不仅展示了当前科技在智能识别领域的成就,也指出了未来可能的发展方向和技术挑战。
2025-04-20 23:41:05 4.85MB
1
基于AUC的特征选择是一种用于机器学习中降维和提高模型泛化能力的方法。AUC(Area Under Curve,ROC曲线下的面积)是评估分类模型性能的重要指标,尤其在样本不平衡的情况下表现更加稳定。传统的特征选择方法往往关注单个特征的好坏,而忽视了特征间的互补性,即不同特征之间如何协同工作共同提高分类性能。 ANNC(Maximizing Nearest Neighbor Complementarity)是一种新颖的特征选择方法,它在AUC的基础上,通过考虑最近邻的互补性来提高特征选择的效率。这种方法不仅关注最近邻错分类信息(nearest misses),也考虑最近邻正分类信息(nearest hits),从而全面评价特征对之间的互补性。互补性意味着某些特征在组合中相互增强,通过相互协作能达到更佳的分类效果。 在ANNC方法中,最近邻的计算是在特征空间的不同维度上进行的,以此来评估特征之间的互补性。这种方法的优势在于它提供了一种新颖的方式来判断在另一个特征的辅助下,一个特征的区分度如何。然而,邻域信息通常对噪声很敏感,仅仅考虑一侧的信息(如最近邻错分类)可能会忽视正分类对特征互补性的影响。 ANNC方法的核心在于将这种局部学习基于的互补性评价策略整合到基于AUC的特征选择框架中,从而全面评价特征对之间的互补性。这样做有助于捕捉那些能够相互协作、共同提升识别性能的互补特征。 本文作者提出了ANNC这一算法,并在公开的基准数据集上进行了广泛的实验,以多种度量标准验证了新方法的有效性。实验结果表明,在不同的数据集和各种度量指标下,ANNC方法都显示出显著的性能提升。 ANNC方法不仅考虑了每个特征本身的特性,而且结合了特征之间的相互作用,从而提供了一种更为全面的特征选择策略。这对于复杂的学习场景,如文本分类、图像检索、疾病诊断等,都有着极其重要的意义。由于这些场景下的样本通常由大量的特征来描述,因此找到一个有效的特征子集,对于提高分类器性能和模型的可解释性至关重要。 ANNC的研究论文强调了特征互补性在提高分类性能方面的重要性,并通过实际的实验验证了这一点。特征互补性的概念可以推广到不同的机器学习任务中,而不仅仅是特征选择。在特征工程领域,了解特征之间的关系有助于构建更加强大和鲁棒的机器学习模型。因此,ANNC的贡献不仅限于其作为一个新的特征选择算法,更在于它为我们理解特征相互作用提供了一种新的视角。
2024-08-29 13:36:06 767KB 研究论文
1
基于支持向量机递归特征消除(SVM_RFE)的分类特征选择算法,matlab代码,输出为选择的特征序号。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2024-06-14 18:29:26 118KB matlab 支持向量机
1
利用ReliefF算法对回归特征变量做特征重要性排序,实现特征选择。 通过重要性排序图,选择重要的特征变量,以期实现数据降维的目的。 程序直接替换数据就可以用,程序内有注释,方便学习和使用。 程序语言为matlab。
2024-05-13 17:26:37 265KB matlab
1
Matlab实现基于MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测 Matlab实现基于MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测(Matlab完整程序和数据) 1.最大互信息系数MIC(数据特征选择算法)的分类预测,MIC特征选择分类预测,多输入单输出模型。 2.多特征输入模型,直接替换数据就可以用。 3.语言为matlab。分类效果图,混淆矩阵图。 4.分类效果图,混淆矩阵图。 5.MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测。 运行环境matlab2018及以上。 经过特征选择后,保留9个特征的序号为: 1 3 5 7 8 9 10 11 12
2024-04-29 15:57:15 1KB matlab 神经网络
1
最大相关和最小冗余算法mRMR特征选择,mRMR分类预测,多变量输入模型。 在特征选择过程中,有一种算法叫做mRMR(Max-Relevance and Min-Redundancy)。其原理非常简单,就是在原始特征集合中找到与最终输出结果相关性最大(Max-Relevance),但是特征彼此之间相关性最小的一组特征(Min-Redundancy)。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图
2024-03-29 17:32:02 74KB
1
遗传算法 (GA) 和布谷鸟搜索优化 (CSO) 的组合,用于分类精度最大化中的特征选择。 我没有使用 Levy 飞行,而是使用 GA 品种和变异进行布谷鸟更新。 我在代码中使用了朴素贝叶斯分类,但您可以将其替换为任何其他分类器。
2023-12-25 10:25:14 129KB matlab
1
对当前学习任务有价值的属性称为是“相关特征”,没有价值的属性称为是“无关特征”,从给定的特征集中选择出相关特征子集的过程,就称为是“特征选择”。其中还有一种特征称为是“冗余特征”,这些特征指的是可以从其他特征中推演出来的特征。
2023-06-21 15:28:42 45KB 机器学习
1
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真
2023-04-27 21:57:39 854KB matlab
1