目前井下危险气体巡检机器人大多采用升降机构或固定探头的形式进行气体环境感知,对机器人的行驶灵活性产生了影响,且受机器人本体机构的限制,大多数巡检机器人只能检测到传感器安装范围内的局部气体环境信息,缺乏针对巷道任意截面空间内的气体浓度检测。针对以上问题,设计了一种基于气体扩散模型的煤矿巡检机器人巷道气体环境智能检测系统。该系统以气体扩散理论为基础,结合煤矿巷道气体环境特点,引入巷道壁帮围岩、风速、气体扩散系数对煤矿巷道气体扩散模型的影响,采用虚拟像源法和遗传算法优化BP神经网络智能算法建立了巷道气体扩散优化模型。通过传感器检测系统获取巡检机器人在行进过程中任意点的气体浓度等环境信息,代入气体扩散优化模型求解最优气体扩散系数,通过输入巷道某点坐标位置,可计算求解相应点的气体浓度分布情况,随着机器人的移动,可获取其路径中不同巷道截面上气体浓度分布数据。实验结果表明,该系统能够解算出符合检测误差要求的巷道任意截面上任意点的气体浓度,并实现动态实时检测;克服了传统煤矿巷道气体检测方法的局限性。利用巡检机器人取代人工巡检作业,为煤矿井下气体智能检测提供了一种新思路与新方法。
1
针对煤矿井下无GPS环境下巡检机器人自主定位问题,研究了基于激光雷达的同步定位与地图构建方法。首先建立激光雷达观测模型和里程计预测模型,将机器人定位和地图构建的实际问题转换为概率数学模型的逻辑推理问题。同时采用自适应蒙特卡罗定位算法进行机器人实时位姿估计,提出了根据粒子权重(地图的匹配度)进行重采样的方法,以去除权重小的粒子,实现了用较少、较好粒子精确表达机器人位姿的后验概率分布,满足机器人利用传感器在栅格地图上实时定位的需求。通过对Fast-SLAM算法进行优化,减少了粒子数量,缓解了粒子耗散,提高了地图构建的精确性。实验结果表明,基于激光雷达的同步定位与地图构建方法有效解决了巡检机器人实时位姿估计和环境地图构建的问题,结合自适应蒙特卡罗定位算法和优化Fast-SLAM算法提高了机器人定位的自适应性和地图构建的精确性。
2021-04-13 21:48:24 1.34MB 行业研究
1