内容概要:iTwin Capture Modeler是一款用于三维数据处理和分析的软件,其2023版本引入了“提取特征”和“地面提取”两大新功能。提取特征功能利用机器学习检测器,自动从照片、点云和网格中提取信息,支持多种特征提取类型,如2D对象检测、2D分割、从2D对象检测生成3D对象、3D分割、从2D分割生成3D对象以及正射影像分割。每种类型的工作流程相似,包括启动、选择输入数据和探测器、配置设置、提交作业、查看和导出结果。地面提取功能则专注于从网格或点云中分离地面与非地面点云,支持多种输入格式,并能将结果导出为多种点云格式或进一步处理为DTM或TIN网格。整个工作流程包括选择输入数据、定义感兴趣区域、提交处理和查看结果。 适合人群:从事三维数据处理、地理信息系统(GIS)、建筑信息建模(BIM)等领域,具有一定软件操作基础的专业人士。 使用场景及目标:①从照片、点云和网格中自动提取和分类特征,提高数据处理效率;②生成精确的地面和非地面点云分割,便于后续的地形分析和建模;③通过2D和3D对象的检测和分割,为工程设计、施工管理和维护提供精准的数据支持;④将处理结果导出为多种格式,方便在不同软件环境中使用。 其他说明:iTwin Capture Modeler提供了丰富的探测器选择,用户可以根据具体需求下载和使用不同的探测器。此外,软件还支持通过ContextScene格式导入外部数据,增加了灵活性。在实际操作中,建议用户根据项目需求选择合适的输入数据和探测器,并合理配置设置以获得最佳效果。
2025-12-16 12:58:39 2.64MB 机器学习 3D建模 特征提取 点云处理
1
本文详细介绍了激光雷达与相机融合的技术实现,包括激光雷达点云俯视图提取和点云投影到图像上的方法。第一部分通过OpenCV库将激光雷达点云投影到俯视图平面,并利用颜色表示距离远近,同时简单滤除地面点云。第二部分涉及激光雷达到相机的坐标转换,包括外参矩阵和内参矩阵的应用,以及如何将点云投影到图像平面上。文章提供了完整的代码实现和注释,并附有数据包下载链接,方便读者实践。此外,还介绍了编译和运行代码的步骤,确保读者能够顺利复现实验结果。 激光雷达技术是一种利用激光束测量目标距离的先进传感技术,它的核心部件是激光发射器和接收器,通过发射激光束并接收反射回来的激光,可以测量出物体与激光雷达之间的距离。这种技术广泛应用于无人驾驶汽车、机器人导航、地形测绘等领域。 相机作为一种图像采集设备,能够记录场景的视觉信息。其捕获的图像包含了丰富的颜色、纹理信息,是理解场景语义的重要数据源。在多传感器融合领域,相机与激光雷达的结合可以互补两种传感器的信息不足,以提供更为全面的环境感知能力。 在激光雷达与相机的融合技术中,点云俯视图的提取是一个重要环节。点云数据包含了激光雷达扫描到的环境中的三维坐标点,将这些点云数据映射到俯视图上,可以用二维图像的形式展示出环境的三维结构信息。通过这种方法,可以直观地观察到场景中物体的形状和布局。 点云投影到图像平面是另一个关键步骤。这涉及到坐标转换的问题,即将点云数据从激光雷达的坐标系变换到相机的坐标系下,这样就可以将点云数据与相机捕获的图像对齐。在此过程中,外参矩阵描述了相机与激光雷达之间的相对位置关系,而内参矩阵则与单个传感器的成像特性相关。通过准确的坐标转换,点云数据可以被映射到对应相机拍摄的图像上,从而实现了对环境的精确感知。 OpenCV是一个开源的计算机视觉库,提供了大量图像处理和计算机视觉方面的功能。在这项技术实现中,OpenCV被用于实现点云数据的处理和点云与图像的融合。通过使用OpenCV库,可以方便地进行颜色映射和地面点云的滤除,使得点云数据更加清晰和易于理解。 为了帮助读者更好地理解和实践上述技术,本文提供了可运行的源码以及详尽的代码注释。此外,还提供了数据包下载链接,使读者能够直接获取到相关的数据集,并进行相应的实验操作。在文章中,还详细介绍了如何编译和运行代码,确保读者能够顺利地复现实验结果,并在此基础上进一步开发和创新。 激光雷达与相机融合技术是一种结合了激光雷达点云处理能力和相机图像处理能力的方法,通过OpenCV库实现了点云俯视图提取、点云与图像的对齐投影,并通过源码分享和操作指导,为相关领域的研究人员和工程师提供了实用的参考和学习材料。
2025-11-20 10:05:56 163KB OpenCV 点云处理
1
这是从官网下载的,基于V8.1版本,只有软件没有破解文件; TScan、TModel、TMatch、TPhoto、Tsurvy 5个模块,注册机CSDN上也有; 挣个辛苦分。 如果不满足你的要求,可以自己百度 TerraSolid download,在官网上,输入自己的microstation 版本、选择TerraSolid版本,输入名字、公司名字、邮箱会接到一个连接。
2025-07-01 15:13:09 7.18MB 点云处理软件
1
点云技术是三维计算机视觉领域中的重要组成部分,它涉及到数据采集、处理、分析以及应用等多个环节。本资源包“经典点云数据集+点云+点云处理算法”提供了斯坦福大学的一系列经典点云模型,对于研究和开发点云处理算法的人员来说,是一个非常有价值的参考资料。 我们要理解什么是点云。点云是由一系列空间坐标点组成的集合,这些点在三维空间中代表物体的表面信息。通过激光雷达(LiDAR)、RGB-D相机等设备,我们可以获取到这些三维点的数据,用于构建物体或环境的三维模型。点云数据集则是一批经过整理和标注的点云数据,用于训练和测试各种点云处理算法。 在本数据集中,包含了九个点云模型,它们以PLY和PCD两种格式提供。PLY是一种基于文本或二进制的3D模型文件格式,常用于存储点云数据和相关的几何与颜色信息。PCD是Point Cloud Library(PCL)项目中的文件格式,同样用于存储点云数据,且支持压缩,便于数据传输和存储。这两种格式都广泛应用于点云处理领域。 点云处理算法主要包括点云的预处理、特征提取、分割、配准、重建等多个步骤。预处理通常涉及去除噪声、滤波和平滑等操作,以提高数据质量。特征提取则是识别点云中的关键点、边缘或表面,为后续的分类、识别任务提供依据。分割是将点云划分为不同的区域或对象,而配准则涉及到对多个点云进行空间对齐,以便进行比较或融合。通过点云数据可以重建出高精度的三维模型。 利用这个数据集,可以进行如下的算法实验: 1. **滤波算法**:如Voxel Grid滤波、Statistical Outlier Removal(SOR)滤波、Radius Outlier Removal等,以去除噪声点。 2. **特征提取**:如SHOT、FPFH、PFH等特征,用于识别点云中的局部结构。 3. **分割算法**:例如基于密度的区域生长、基于聚类的分割或基于图割的方法,将点云分为不同的部分。 4. **点云配准**:使用ICP(Iterative Closest Point)或其变种,实现两个点云之间的精确对齐。 5. **三维重建**:如多视图立体匹配或基于点云的表面重建,生成高质量的3D模型。 通过对比不同算法在这些标准数据集上的表现,可以评估算法的性能,为算法优化和新算法设计提供依据。此外,这些数据也适用于深度学习模型的训练,如点云分类、分割和目标检测等任务。 这个数据集为点云处理的研究者和开发者提供了一个丰富的实践平台,有助于推动点云技术的发展和应用,无论是在自动驾驶、机器人导航、建筑建模还是虚拟现实等领域,都有着广泛的应用前景。
2025-04-09 11:32:17 765.22MB 数据集
1
包含PclSharp源码,和编译好的二进制文件; c#使用PclSharp框架封装最新1.14.1版本的Pcl,修复了编译错误的bug; 使用 CMake配置c++工程项目,方便添加自定义算法, PclSharp也支持.net 4.5以上任意版本
2024-12-04 18:02:43 49.47MB 点云处理
1
内容概要: 基于PointNet2的个性化点云数据集分类预测是一个使用深度学习的计算机视觉任务。它涉及将个性化的点云数据集分为不同的类别,例如汽车、人或建筑物等。 适用人群: 本项目适用于对深度学习、点云处理和分类预测感兴趣的计算机科学、人工智能研究人员以及学生。 使用场景及目标: 点云数据处理:根据具体的应用场景,可以通过数据清洗、处理和预处理等方式准备点云数据集。 PointNet2模型构建:使用PointNet2或相似的架构来构建深度学习模型,用于对点云数据进行特征提取和分类。 模型训练与验证:划分数据集为训练集和测试集,使用训练集对模型进行训练,并在测试集上验证模型的性能和准确率。 类别预测:使用已训练的模型对新的个性化点云数据进行分类预测。 其他说明: 该项目可能涉及深度学习框架(如TensorFlow、PyTorch等)和相应的库,您需要安装所需的依赖项。 项目实施过程中,可能需要对模型架构、数据预处理方法、损失函数和优化器等进行调整和优化。 数据集的选择和准备对于模型的训练和性能非常重要。一个好的数据集应包含多样性和代表性的样本。
2023-09-17 17:06:16 323.24MB 数据集 点云处理
1
机器视觉方面,基于halcon实现点云的读取和处理并将其转为深度图进行ply格式的建模,涉及到halcon对点云的处理
2023-05-05 19:07:14 401.22MB halcon ply点云 点云图转深度图 点云处理
1
通过阅读17篇点云处理的综述文章,可以全面了解三维点云处理的技术发展、了解其发展路线,包括点云物体检测、点云语义分割,深度学习在点云处理中的应用,自动驾驶中的点云处理等多个方面,便于刚刚接触点云方向不久的伙伴,进行合理的学习规划,也方便对自己的研究方向进行更好的分析与了解。
1
这是pointnet++的需要的训练数据集,由于上传大小限制,分割成01和02两个zip文件,需同时下载。
2023-03-03 22:29:21 538.05MB 深度学习 点云处理
1
点云数据转换,点云数据显示,点云数据构建tin,等等
2023-03-01 20:51:14 22.61MB 点云
1