内容概要:基于2008年12月份至2017年6月份的数据集,分别训练了随机森林模型和逻辑回归模型。根据今日的气象信息训练分类模型,根据该模型预测澳大利亚第二天的降雨。 该数据集包含来自许多澳大利亚气象站的大约10年的每日天气观测以及天气预报,“RainTomorrow”是要预测的目标变量,这意味着:第二天下雨了,如果当天的降雨量>=1mm,则此列为“是”。气象信息包括日期,城市,最低温度,最高温度,降雨量,蒸发量,阳光(一天中阳光明媚的小时数),一天中最强阵风、9am、3pm的风向和风速,一天中9am、3pm的湿度、气压、云层(云层遮盖的天空比例)、温度、当日是否下雨。 该数据集的主要任务目标是根据今日的气象信息训练分类模型,根据该模型预测澳大利亚第二天的降雨。数据总量为142194行,24列。
目标:1. 基于澳大利亚气象数据集探索数据特征信息;2. 基于澳大利亚气象数据集处理数据特征内容;3. 观察特征中具体的值,可视化分析对预测问题的影响;4. 拆分数据集建模与模型评估;
1