内容概要:本文展示了带有CBAM注意力机制改进的U-Net架构模型的具体实现,使用PyTorch作为深度学习库。文中定义了ChannelAttention(信道注意力)和SpatialAttention(空间注意力)这两个重要子模块来提高模型对特征的理解力。接下来,还描述了网络不同层次之间的下采样、跳跃连接以及最后输出部分所使用的特定操作细节。最后,给出了模型实例化及简单调用的方法,并测试了随机生成的数据样本输出维度验证模型搭建正确无误。 适合人群:本教程主要适用于有一定机器学习或深度学习基础,并初步掌握PyTorch环境配置的相关开发者和技术爱好者,同时也非常适合从事医学影像分析或其他图像处理相关科研工作的专业研究人员用来进行项目实践探索。 使用场景及目标:这个模型可以应用于各种需要精确识别对象轮廓的任务如细胞计数检测、皮肤病灶边界分割等方面;其核心目的就是利用深度卷积神经网络提取图像特征,并借助注意力机制提升特征表达质量从而改善最终预测精度。 其他说明:此项目不仅限于二分类任务,只要调整相应的类别数即能应对多类别的情况,此外还允许用户选择不同的采样方式以适应更多种分辨率的图片处理需求。
2025-04-15 09:44:41 7KB 深度学习 PyTorch 图像分割 U-Net
1
内容概要:这篇文档详细讲解了PyTorch的入门与应用方法。首先简述了PyTorch作为现代深度学习框架的优势与应用场景。随后介绍了如何安装和配置PyTorch开发环境,涉及Python版本选择和相关依赖库的安装。接着解释了PyTorch中最核心的概念——张量,及其创建、操作和与Numpy的互转等知识点。自动求导部分讲述了计算图的构建、自动求导的工作原理及参数更新的流程。神经网络方面,则涵盖了自定义神经网络的建立,包括常见的层如全连接层、卷积层等,并介绍了常见损失函数(如均方误差、交叉熵)及优化器(SGD、Adam)。最后,通过CIFAR-10图像分类任务的实际操作案例,展示了如何从头到尾实施一个完整的机器学习项目,包括数据加载、模型设计、训练、评估等一系列流程。此外还提及了后续扩展学习方向以及额外的学习资源推荐。 适合人群:主要面向希望掌握PyTorch框架并在实践中理解深度学习技术的专业人士或爱好者。 使用场景及目标:适用于希望深入学习PyTorch并能够独立构建和训练模型的技术人员;目标是在实际工作中运用PyTorch解决复杂的深度学习问题。 阅读建议:本文档适合有一定编程经验且
2025-04-07 14:45:52 333KB 深度学习 PyTorch GPU加速 自动求导
1
自动驾驶感知是现代智能交通系统中的关键技术之一,而深度学习在这一领域扮演了核心角色。PyTorch,作为一款流行的深度学习框架,因其易用性、灵活性和强大的计算能力,被广泛应用于自动驾驶感知模型的开发。本资料包"自动驾驶感知深度学习pytorch"聚焦于使用PyTorch实现自动驾驶环境中的视觉感知任务。 我们需要理解自动驾驶感知的基本概念。它主要包括对象检测(识别车辆、行人等)、道路分割(区分路面和非路面)、场景理解(识别交通标志、车道线等)以及运动预测(预测其他道路使用者的行为)。这些任务通过深度学习模型可以实现高效、准确的处理。 在PyTorch中,常用的数据集如Kitti、Cityscapes、Waymo Open Dataset等为自动驾驶感知提供了丰富的训练和验证数据。例如,Kitti数据集包含了各种真实世界驾驶场景的图像,用于训练物体检测和分割模型。Cityscapes数据集则专注于语义分割,提供精细的城市街景标注。 深度学习模型在自动驾驶感知中扮演关键角色。这里提到的PSMNet(Point Set Matching Network)可能是一个用于立体匹配或深度估计的网络。立体匹配是自动驾驶中的一项重要技术,通过比较左右相机图像的对应点,计算出场景的三维深度信息。PSMNet通常采用卷积神经网络(CNN)和长短期记忆网络(LSTM)结合的方式,以处理图像的局部和全局上下文信息。 在实现上,PSMNet-master可能是一个包含PSMNet源代码、预训练模型和数据处理脚本的项目。学习和使用这个项目,你需要了解以下几点: 1. 数据预处理:将原始图像和标签转换为模型可接受的格式,如Tensor输入。 2. 模型结构:理解PSMNet的网络架构,包括其特征提取、上下文建模和匹配成本计算等部分。 3. 训练流程:设置合适的优化器、学习率策略和损失函数,进行模型训练。 4. 评估与可视化:使用标准指标如End-Point Error (EPE)评估模型性能,并通过可视化工具查看深度图,理解模型的预测效果。 此外,为了提升自动驾驶感知的实时性和准确性,你还需要了解模型的优化技巧,如模型量化、剪枝、蒸馏等,以及如何将训练好的模型部署到嵌入式硬件平台上。 "自动驾驶感知深度学习pytorch"涵盖了深度学习在自动驾驶领域的应用,特别是使用PyTorch实现PSMNet网络。通过深入学习和实践,你可以掌握自动驾驶感知的关键技术和工具,为智能交通系统的未来发展做出贡献。
2025-04-01 17:36:08 43KB pytorch pytorch 自动驾驶 深度学习
1
基于cnn和pytorch的图像分类代码,适用于初学基于深度学习的图像分类的人
2025-03-24 01:50:47 9KB pytorch 分类算法 图像处理
1
源程序+ 数据集+ 实验报告 问题描述: 理解序列数据处理方法,补全面向对象编程中的缺失代码,并使用torch自带数据工具将数据封装为dataloader 分别采用手动方式以及调用接口方式实现RNN、LSTM和GRU,并在至少一种数据集上进行实验 从训练时间、预测精度、Loss变化等角度对比分析RNN、LSTM和GRU在相同数据集上的实验结果(最好使用图表展示) 不同超参数的对比分析(包括hidden_size、batch_size、lr等)选其中至少1-2个进行分析 ps:用户签到数据实验的难度会稍高一些,若在实验中选用,可酌情加分
2024-05-08 11:05:31 18.51MB 深度学习 pytorch python
1
深度学习框架,gpu版本的pytorch,在python3.5+ cuda10.0 + cudnn7.6+pytorch1.2.0 gpu_torcvision0.4.0
2024-04-07 22:23:24 714.94MB 深度学习,pytorch gpu
1
分享一套图神经网络视频教程——《深度学习-图神经网络实战》,视频+源码+数据+文档资料下载! 《深度学习-图神经网络实战》课程旨在帮助同学们快速掌握深度学习在图模型领域算法及其应⽤项⽬。内容主要包括三个模块: 1、图神经⽹络经典算法解读,详细解读GNN,GCN,注意⼒机制图模型等算法 ; 2 、图神经⽹络框架PyTorch-Geometric,全程实战解读图神经⽹络框架应⽤⽅法; 3 、图神经⽹络项⽬实战,基于真实数据集与实际项⽬展开图数据集构建与模型训练并应⽤到实际场景中。 整体⻛格通俗易懂,提供全部数据与代码。
2023-05-19 18:57:42 1KB 深度学习 pytorch pytorch 神经网络
1
利用Pytorch,opencv进行人脸口罩佩戴检测,并且在视频流中显示出来。 里面包含代码文件(.py),数据集文件和训练好的模型文件。如果感觉检测效果不是很好,可以自己重新训练。
2023-04-21 23:35:02 251.9MB 人脸检测 口罩检测 深度学习 Pytorch
1
Deep-Learning-with-PyTorch 辛苦下载下来赚点积分下其他东西,分享给有需要的,感谢大家!
2023-04-04 22:14:37 145.47MB 深度学习 pytorch
1
pytorch深度学习框架虽然在一些方面上不如tensorflow,但是具备自己特有的优势,本代码是深度学习和pytorch之间的一些例程,以供学习~
2023-03-01 15:13:51 29.97MB pytorch python 深度学习
1