Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-10-17 19:14:22 7.65MB matlab
1
番茄作物是市场上的重要主食,并且是日常食用的最常见的作物之一。 植物或农作物疾病导致生产质量和数量下降; 因此,对这些疾病的检测和分类非常必要。 感染番茄植物的疾病有很多类型,例如细菌斑,晚疫病,裁缝叶斑,番茄花叶和黄色弯曲。 早期发现植物病害可提高产量并提高其质量。 当前,智能方法已被广泛用于检测和分类这些疾病。 这种方法可以帮助农民识别类型吗? 感染农作物的疾病 当前工作的主要目的是应用一种现代技术来识别和分类疾病。 智能技术基于使用卷积神经网络(CNN)的技术,而卷积神经网络是机器学习的一部分,可以早期发现有关植物状况的信息。 CNN方法取决于从输入图像中提取特征(例如颜色,叶子边缘等),并在此基础上确定分类。 Matlab m文件已用于构建CNN结构。 从植物村获得的数据集已用于训练网络(CNN)。 所建议的神经网络已被用于分类六种类型的番茄叶片情况(一种健康的叶片植物疾病和五种类型的叶片疾病)。 结果表明,卷积神经网络(CNN)已经实现了96.43%的分类精度。 真实图像用于验证建议的CNN技术进行检测和分类的能力,并使用5兆像素相机从真实农场中获得,因为感染该星球的大多数常
2024-03-01 15:43:09 1.85MB 行业研究
1
原始的U-Net采用跳跃结构结合高低层的图像信息, 使得U-Net模型有良好的分割效果, 但是分割结果在宫颈细胞核边缘依然存在分割欠佳、过分割和欠分割等不足. 由此提出了改进型U-Net网络图像分割方法. 首先将稠密连接的DenseNet引入U-Net的编码器部分, 以解决编码器部分相对简单, 不能提取相对抽象的高层语义特征. 然后对二元交叉熵损失函数中的宫颈细胞核和背景给予不同的权重, 使网络更加注重细胞核特征的学习. 最后在池化操作过程中, 对池化域内的像素值分配合理的权值, 解决池化层丢失信息的问题. 实验证明, 改进型U-Net网络使宫颈细胞核分割效果更好, 模型也越鲁棒, 过分割和欠分割比率也越少. 显然, 改进型U-Net是更有效的图像分割方法.
1
摘要:人工神经网络作为人工智能的分支,在模式识别、分类预测等方面已成功地解决了许多现代计算机难以解决的实际问题。然而随着人工智能的发展,神经网络的自主性特征学习
1
本文对2019年10月更新的CNN综述文章《A Survey of the Recent Architectures of Deep Convolutional Neural Networks》进行了翻译,对大家全面了解CNN架构进展有所帮助。
2023-01-04 12:27:47 2.02MB 深度学习 卷积神经网络 CNN 综述
1
该数据包含多云、下雨、晴、日出四种类型天气的照片。分为四个文件夹,每个文件夹对应着该类型的天气图片。 | 文件夹名称 | 天气类型 | 数据量 | |--|--|--| | cloudy | 多云| 300| rain|下雨|215 shine| 晴|253 sunrise| 日出|357
2022-12-20 20:24:56 91.24MB 深度学习 卷积神经网络 数据集
1
卷积神经网络(CNN)入门总结-基于tensorflow2 包含CNN原理、已经在tf2中如何实现 CSDN文章地址:https://blog.csdn.net/zzpl139/article/details/127552177 在线运行地址:https://www.heywhale.com/mw/project/63410e26dfae0249677f85b0 数据地址:https://github.com/garythung/trashnet 数据地址2:https://www.heywhale.com/mw/dataset/5d1578e4708b90002c6a3238
2022-12-08 19:30:32 126KB CNN 深度学习 卷积神经网络 tensorflow2
1
python毕业设计基于深度学习卷积神经网络的网站验证码识别研究与实现项目源码+全部数据.zip这是本科毕业设计的课题,“基于深度学习的网站验证码识别研究与实现”。主要是利用卷积神经网络,基于TensorFlow平台,构建了三层卷积两层全联接模型,训练出的一个准确率为91.3%的识别模型。再基于Django构建登陆系统,使用selenium实现自动测试,完成验证码从识别到自动登录的全过程。 python毕业设计基于深度学习卷积神经网络的网站验证码识别研究与实现项目源码+全部数据.zip这是本科毕业设计的课题,“基于深度学习的网站验证码识别研究与实现”。主要是利用卷积神经网络,基于TensorFlow平台,构建了三层卷积两层全联接模型,训练出的一个准确率为91.3%的识别模型。再基于Django构建登陆系统,使用selenium实现自动测试,完成验证码从识别到自动登录的全过程。 基于深度学习卷积神经网络的网站验证码识别研究与实现项目全部数据.zip 基于深度学习卷积神经网络的网站验证码识别研究与实现项目全部数据.zip 基于深度学习卷积神经网络的网站验证码识别研究与实现项目全部数据.zi
基于HLS的高效深度学习卷积神经网络FPGA实现方法项目全部数据.zip本文通过对现有相关研究的分析、总结和改进,给出了一系列在软件层面上如何构建和训练小巧高效且利于硬件加速的网络方法,在FPGA实现时如何减少资源、降低功耗及提高速度的方法,以及在HLS中如何增加设计灵活性、可移植性和可扩展性的方法,具有很好的实用价值。并结合这些方法构建和训练了一个网络,命名为EfficientNet,使用HLS在FPGA上对其进行了推断加速。通过与其他网络和平台的对比,验证了这些方法的有效性。本文的主要工作和贡献如下: 设计实现了一种轻量化的深度学习网络EfficientNet。针对传统网络参数量及计算量大且不利于硬件加速的问题,本文在保证精度的前提下,分析了以深度可分离卷积代替标准卷积、以步进代替池化、以平均池化代替全连接的方法,提出了尺寸不变通道增减交替的方法,并对这些方法进行了集成,从而构建了一个低复杂度的DCNN网络,并命名为EfficientNet。实验结果表明EfficientNet在公开的Flower_photos数据集上的分类精度为89.3%,相比Inception-v3,在参数量
包含训练代码、预测代码、数据划分代码、网络代码等,采用pytorch框架所写。 代码中包含3D卷积神经网络和支持向量机(SVM)、随机森林(RF)、K最邻近(KNN)这三个机器学习算法。可以随意组合为3DCNN-SVM、3DCNN-RF、3DCNN-KNN。代码清晰,便于理解。也可单独训练3DCNN或者机器学习。