针对传统衍射透镜工作在宽波段时色散严重、像质不佳的问题,提出一种基于RGB三波段的单片式分区消色差衍射透镜的设计方法,采用标量衍射理论对等宽度和等面积两种分区方式进行仿真分析,并与传统衍射透镜进行点扩散函数和衍射效率对比与分析。分析结果显示,分区消色差衍射透镜能够在RGB三波段工作时,将三个波长衍射效率的标准偏差由传统衍射透镜的0.6607下降到0.1519和0.0592,同时保持良好的成像效果。最后,考虑到实际加工情况,分别仿真了不同分区方式下微结构量化为八台阶所对应的光学性能参数。结果表明,本文提出的设计方法能够使得衍射透镜在RGB三波段实现良好的消色差效果,并且该方法具有一定的实用性和普适性。
2022-11-25 15:49:00 49KB 衍射透镜 消色差 点扩散函 衍射效率
1
在激光光束质量测量时,为了避免每次测量不同波长激光都要对聚焦透镜的焦平面位置进行标定,降低测量误差,研究和设计了覆盖紫外至近红外波段的超消色差物镜。基于波像差的理论,推导了超消色差物镜初始结构求解的方程组。应用光学设计软件Zemax设计了工作波段为350~1100 nm的宽光谱超消色差物镜,焦距为200 mm,入瞳直径为25 mm。给出了光学系统图、纵向像差曲线、焦移曲线及调制传递函数(MTF)曲线。设计结果表明,采用该方法设计的物镜,在0.707孔径处不同波长光线的球差曲线基本相交于一点,实现了超消色差;工作波段内的焦移仅为26.3 [μm],基本固定了焦平面的位置;在截止频率范围内的MTF均接近衍射极限,满足了紫外至近红外波段激光光束质量的测量要求。
2022-11-21 16:58:52 879KB 光学设计 超消色差 波差法 激光光束
1
21.2 复消色差条件 如在 16.5.1 节中所见,一个消色差的薄透镜有两个限制条件: (21.1) 而复消色差的薄透镜则有三个限制条件:
2022-06-30 14:03:53 4.98MB Zemax初学宝典
1
该资源是ZEMAX光学设计的源文件,利用3片式来实现色差的消除,对光学设计人员有帮助
2021-12-13 11:02:55 16KB zemax Chromatic aberration
1
对激光光束参数进行测量时,为了解决聚焦光学系统对不同波长激光焦平面位置不同的问题,简化测量步骤,降低测量误差,设计了宽波段超消色差聚焦光学系统。依据波色差理论,推导了超消色差设计的初始结构求解方程组。应用光学设计软件ZEMAX设计了工作波段为350~1100 nm的超消色差光学系统,焦距为250 mm,入瞳直径为25 mm。给出了设计结果的纵向像差曲线和焦移曲线,经分析表明,采用该方法设计的光学系统,在0.707孔径处不同波长光线的球差曲线基本相交于一点,实现了超消色差;工作波段内的焦移仅为38.2 μm,基本固定了焦平面的位置,满足了紫外至近红外波段激光光束参数的测量要求。
2021-11-05 17:15:05 1.07MB 光学设计 超消色差 波色差 激光光束
1
针对棱镜-光栅-棱镜(PGP)型成像光谱仪装调难度大的问题,通过校正PGP成像光谱仪色差的方法保证探测器像面与光轴垂直,并设计了一款宽波段复消色差的PGP系统。从宽波段复消色差理论出发,计算了三种玻璃材料组合理论色差的最小值,为光学设计的复消色差提供了理论支持。利用光学设计软件优化得到的初始结构,结果表明,PGP系统的二级光谱得到了很好的校正,且探测器的CCD无需倾斜,更方便后期装调。覆盖谱宽为400~1000 nm,视场为9.2 mm,空间分辨率优于10 μm,光谱分辨率优于2.8 nm,光学传递函数大于0.7,接近衍射极限,满足成像要求。
2021-03-02 12:06:18 6.18MB 光学设计 成像光谱 消色差 二级光谱
1