利用COMSOL多相流模拟技术对电弧冲击与击穿模型进行研究的方法。文章首先解释了电弧冲击与击穿的基本概念及其重要性,随后重点探讨了COMSOL多相流模拟的应用,包括温度场、流体场和电磁场的分布情况。通过设定合理的热源、热传导模型、相态属性等参数,能够准确模拟电弧的产生过程及其对周围环境的影响。最后,文章提供了MATLAB代码片段作为示例,帮助读者理解和应用这一仿真方法。 适合人群:从事电力系统设计、维护及相关研究的专业人士,尤其是对电弧现象感兴趣的科研人员和技术工程师。 使用场景及目标:适用于需要深入了解电弧冲击与击穿机制的研究项目,旨在提高电力系统的安全性和可靠性。通过掌握COMSOL多相流模拟技术,研究人员可以更好地预测和控制电弧的发生和发展。 其他说明:文中提供的代码片段仅为基本示例,实际应用中可能需要根据具体情况调整和优化模型参数。
2026-01-13 22:35:55 315KB
1
利用COMSOL软件模拟两相流体在基质裂缝双重介质中的流动模式。首先阐述了研究背景,强调了两相流体流动模式在石油工程和地下水动力学等领域的重要性。然后建立了数学模型,考虑了基质和裂缝两种介质特性及其内部的两相流体(如油和水)的物理参数。通过设定不同参数并运行模拟实验,展示了流体的速度分布、压力分布及其他相关参数变化。最后讨论了研究成果的应用前景,指出了当前研究存在的局限性,并提出了改进建议。 适合人群:从事流体力学、石油工程、地下水动力学等相关领域的科研人员和技术工作者。 使用场景及目标:适用于需要深入了解两相流体在复杂地质环境中的流动行为的研究项目,旨在提升对基质裂缝双重介质中流体运动规律的认识,从而指导实际工程应用。 其他说明:文中提供了部分MATLAB代码片段,用于设定模型参数和执行模拟任务,有助于读者理解和复现研究过程。
2026-01-11 10:45:21 306KB
1
:water_wave: Fluid.js :water_wave: 一个JavaScript库,可基于不可压缩流的Navier-Stokes方程轻松部署WebGL渲染的流体模拟。 设置简便,自定义功能丰富,可以在不到五分钟的时间内在响应式Web项目中运行精美呈现的WebGL流体模拟。 该库是对实现的流体模拟的。 该项目处于早期开发阶段,可以接受捐助。 除非您已经正确评估了性能和浏览器兼容性,否则请不要在生产级项目中使用此库。 入门 CDN < script src =" https://cdn.jsdelivr.net/npm/fluid-canvas@latest " > </ script > 终端 npm i fluid-canvas 克隆 git clone https://github.com/malik-tillman/Fluid-JS.git 用法 将Fluid.js添加到您的<head> < head
2025-12-30 19:41:31 17.44MB JavaScript
1
叠前同时反演进行岩性识别及流体预测技术浅析,王晓伟,孙利华,基于全角度多次叠加地震资料的常规纵波阻抗反演方法,在预测火山岩等某些岩性油气藏和隐蔽油气藏时,由于储层和非储层阻抗值域重
2025-12-11 19:53:32 395KB 首发论文
1
针对滨里海盆地东缘M区块石炭系碳酸盐岩缝洞型储层的精细预测问题,开展了基于三维叠前地震数据的AVO反演技术应用研究,重点论述了岩石物理分析、敏感弹性参数验证、多参数综合分析等关键技术环节。基于三维叠前地震资料,利用叠前地震资料对油气检测的敏感性更强的特点,以工区内的实际井统计资料为基础,结合岩石物理参数分析,建立岩石物理模型,分析孔洞型碳酸盐岩储层的流体敏感性特征。通过叠前AVO反演技术,反演出多种岩石物理参数(纵、横波阻抗、密度和杨氏模量等),进行多参数综合分析储层预测,同时借助裂缝检测技术进行论证,成功预测了储层发育带。经过实测钻井资料验证,多参数分析结果与工区内井的吻合程度很高。
1
内容概要:本文详细介绍了利用COMSOL软件模拟电流体动力学中的泰勒锥现象。作者通过具体的代码实例展示了如何设置电场、流场以及电荷输运的耦合条件,探讨了不同参数(如电导率、电压、表面张力等)对泰勒锥形成的影响。文中还讨论了数值计算过程中可能出现的问题及解决方法,强调了多物理场耦合仿真的重要性和复杂性。此外,文章提到了泰勒锥在静电纺丝、质谱分析等领域的实际应用。 适合人群:从事电流体动力学研究的科研人员、研究生以及对多物理场耦合仿真感兴趣的工程师。 使用场景及目标:①帮助研究人员更好地理解和模拟泰勒锥现象;②为相关工业技术(如静电纺丝)提供理论支持和技术指导;③探索电流体动力学在微观尺度下的新奇现象。 其他说明:文章结合了理论推导和实际操作经验,提供了丰富的代码片段和实用技巧,有助于读者快速掌握COMSOL在电流体动力学仿真中的应用。
2025-12-09 09:27:29 264KB
1
宇宙一阶相变中气泡的增长涉及非平凡的流体动力学。 因此,对相变前沿的传播的研究通常需要几种近似方法。 经常使用的近似方法是将两个相描述为仅由辐射和真空能组成(所谓的布格状态方程)。 我们表明,在现实模型中,低温阶段的声速通常小于辐射的速度,并且我们研究了这种情况下的流体动力学。 我们特别发现,一种新型的流体动力学解决方案是可能的,这在布袋模型中不会出现。 我们获得了将潜热转移到等离子体的整体运动中的效率的分析结果,该效率是每个相中声速的函数。
2025-12-06 17:33:29 896KB Open Access
1
COMSOL模拟流固传热,CO2注入井筒过程的温度压力变化以及对于地层温度的干扰,考虑油管壁,套管环空流体,套管壁,水泥管的导热作用 ,核心关键词:COMSOL模拟; 流固传热; CO2注入; 井筒过程; 温度压力变化; 地层温度干扰; 油管壁; 套管环空流体; 套管壁; 水泥管导热。,COMSOL模拟CO2注入井筒传热过程:温度压力变化与地层温度干扰分析 在现代石油工程和地热开发领域,COMSOL模拟技术的应用越来越广泛,它能够帮助工程师在理论和实际应用中模拟复杂的物理过程。其中,流固传热模拟是一个重要的研究方向,尤其是在二氧化碳(CO2)注入井筒过程中,温度和压力的变化以及对地层温度的干扰,是影响井筒安全和注气效率的关键因素。 通过使用COMSOL软件,可以建立一个包含油管壁、套管环空流体、套管壁和水泥管在内的多物理场模型。在这个模型中,需要考虑的主要因素包括流体的动力学行为、固体的热传导性能以及流体与固体之间的热交换。在CO2注入井筒的过程中,随着二氧化碳的注入,井筒内的温度和压力会发生变化,这些变化不仅会影响井筒结构的稳定性和安全性,还会对周围地层温度产生干扰,进而影响地层的流体运动和储层的稳定性。 温度和压力的变化对井筒结构的破坏往往是通过材料的热膨胀和压力引起的应力变化来体现的。当温度升高时,材料会膨胀,如果膨胀受到约束,就会在材料内部产生热应力。同样,井筒内的高压也会对井筒壁体施加力,产生压缩应力。这些应力若超出材料的承载能力,就会导致井筒的损坏,甚至引发井喷等严重事故。 此外,井筒内的流固传热过程还与周围地层有着密切的联系。CO2注入会引起地层温度的改变,这种改变会通过热传导的方式影响到较远的储层区域。在某些情况下,这种温度变化可能会促进或抑制储层中的化学反应,改变地层的渗透率,甚至影响到流体的相态和流动特性,对采收效率产生显著影响。 在进行COMSOL模拟时,必须准确设定各种材料的物理属性,如导热系数、比热容、热膨胀系数以及流体的热物性参数等,同时考虑实际工况中可能遇到的边界条件和初始条件。通过模拟分析,可以预测CO2注入井筒过程中的温度压力变化规律,评估不同操作条件下的安全性和效率,并为工程设计提供理论依据。 为了全面掌握整个井筒的传热和流体流动情况,模拟通常需要采用迭代和细化网格的方式,以确保模拟结果的精确性。此外,模拟还需要对长期运行过程中可能出现的最不利情况做出评估,如井筒的疲劳寿命和潜在的安全风险。 通过这次模拟分析,我们可以得出结论:在CO2注入井筒的过程中,温度和压力的变化以及它们对地层温度的干扰是影响整个工程安全和效率的关键因素。通过深入研究这些因素,并利用先进的模拟工具如COMSOL进行分析,可以为工程设计和操作提供有力的技术支持,确保井筒的安全和经济性。
2025-11-29 21:42:25 1.17MB 数据仓库
1
项目是光滑粒子动力学(SPH)流体模拟研究 - 本质上模拟流体,成千上万的小颗粒,该方法的基本思想是将连续的流体(或固体)用相互作用的质点组来描述,各个物质点上承载各种物理量,包括质量、速度等,通过求解质点组的动力学方程和跟踪每个质点的运动轨道,求得整个系统的力学行为用C++与OpenGL的。
2025-11-19 19:48:41 5.64MB
1
《SOLIDWORKS Flow Simulation流体力学分析官方中文教程》是专为工程师和技术人员设计的一套详尽的教学资源,旨在帮助用户掌握SOLIDWORKS软件中的流体力学模拟功能。SOLIDWORKS Flow Simulation是一款集成在3D CAD系统中的强大工具,能够对各种工程问题进行精确的流体流动、热传递和化学反应分析。 本教程首先会引导用户熟悉SOLIDWORKS Flow Simulation的工作界面和基本操作,包括如何创建和导入模型,设置边界条件,以及选择合适的物理场和材料属性。这些基础知识对于理解和应用流体力学模拟至关重要。通过学习,用户将了解到如何定义流入和流出边界,处理固体和流体之间的接触面,以及如何设置初始条件和热源。 教程深入探讨了流体力学的基本原理,如连续性方程、动量方程和能量方程,这些都是求解流体流动问题的基础。此外,还会讲解到湍流模型,包括Spalart-Allmaras、RANS(Reynolds Averaged Navier-Stokes)和LES(Large Eddy Simulation),以及它们在不同流动条件下的适用性。 在热传递方面,教程涵盖了对流、辐射和导热的不同机制,并介绍如何在Flow Simulation中考虑这些效应。用户将学习如何分析温度分布、热流密度和热传递系数,这对于优化热管理系统或评估设备散热性能具有重要意义。 除了理论知识,本教程还包含大量实例,涵盖了从简单的管道流动到复杂的流体-结构相互作用问题。通过实际操作,用户可以掌握如何设置和运行模拟,以及如何解释和解读结果。教程还会教授如何利用后处理工具,例如生成颜色映射、矢量图和动画,以便于理解和展示分析结果。 此外,"播放说明.html"和"使用说明.txt"文件很可能是关于如何观看和交互使用教程的指南,可能包含了播放视频教程的步骤,以及对文本教程的阅读和实践建议。 这个官方中文教程是学习和提升SOLIDWORKS Flow Simulation技能的理想资源,无论你是初学者还是经验丰富的用户,都能从中获益匪浅。通过系统的学习,你可以自信地运用SOLIDWORKS Flow Simulation解决实际工程中的流体力学问题,提高设计效率和产品性能。
2025-11-19 10:43:54 8.26MB
1