No More Strided Convolutions or Pooling:A New CNN Building Block for Low-Resolution Images and Small Objects 无卷积步长或池化:用于低分辨率图像和小物体的新 CNN 模块SPD-Conv 提出了一个名为SPD-Conv的新的CNN构建块,它完全消除了步长和池化操作,取而代之的是一个空间到深度卷积和一个无步长卷积。
2023-03-08 09:47:30 1.91MB paper
1
Yang Gao1, Oscar Beijbom1, Ning Zhang2∗, Trevor Darrell1 †Bilinear models has be
2023-01-07 20:46:27 2.06MB
1
1.CNN基础结构 2.卷积操作细节讲解 3.图像基础知识 4.池化操作 可以不可以模仿人类大脑的这个特点,构造多层的神经网络,较低层的识别初级的图像特征,若干底层特征组成更上一层特征,最终通过多个层级的组合,最终在顶层做出分类呢? 答案是肯定的,这也是许多深度学习算法(包括CNN)的灵感来源
2022-11-23 11:26:38 11.25MB CNN 深度学习 人工智能
1
CVPR2022 - 重新审视池化:你的感受野不是最理想的.doc
2022-07-12 18:05:46 459KB 技术资料
《Mybatis 手撸专栏》第6章:数据源池化技术实现.doc
2022-07-11 19:08:12 551KB 技术资料
从容器化到资源池化,数栈云原生技术实践探索之路.doc
2022-07-10 09:09:19 1.05MB 技术资料
1.领域:FPGA,CNN卷积神经网络 2.内容:题目,vivado2019.2平台中通过verilog实现CNN卷积神经网络包括卷积层,最大化池化层以及ReLU激活层+操作视频 3.用处:用于CNN卷积神经网络算法编程学习 4.指向人群:本科,硕士,博士等教研使用 5.运行注意事项: 使用vivado2019.2或者更高版本测试,用软件打开FPGA工程,然后参考提供的操作录像视频跟着操作。 工程路径必须是英文,不能中文。
2022-06-08 12:05:19 29.36MB CNN卷积神经网络 FPGA ReLU激活层
纯verilog实现CNN卷积网络,包括卷积层,池化层,全连接FC层,vivado2019.2开发,含testbench
2022-05-03 12:07:10 32.97MB cnn 人工智能 神经网络 深度学习
OrionX AI算力资源池化解决方案 技术白皮书
2022-04-25 20:04:51 3MB 人工智能 文档资料
人工智能-图分类-自注意力-使用基于自注意力池化机制结合GCN模型实现图分类 所需环境: 1.torch:1.4.0 2.torch_scatter:2.0.3 3.scipy:1.4.1 数据集 1.DD:https://ls11-www.cs.tu-dortmund.de/people/morris/graphkerneldatasets/DD.zip 2.COX2:https://ls11-www.cs.tu-dortmund.de/people/morris/graphkerneldatasets/COX2.zip 3.BZR:https://ls11-www.cs.tu-dortmund.de/people/morris/graphkerneldatasets/BZR.zip 运行方式
2022-04-23 19:06:03 5.36MB 图分类 自注意力 GCN 池化