CRC校验算法是一种广泛应用于数据通信和存储领域的错误检测技术,它的全称为Cyclic Redundancy Check。该算法基于多项式除法原理,通过计算数据的校验码,确保数据在传输或存储过程中未发生错误。CRC的核心思想是生成一个简短的固定位数的校验码,这个校验码是根据原始数据计算出来的,并附加到数据后面。接收方收到数据后,会重新计算校验码并与接收到的校验码进行比较,如果两者一致,则认为数据传输无误。 CRC的计算涉及几个关键参数,包括: 1. WIDTH:表示CRC值的位宽,如CRC-8表示生成的CRC为8位。 2. POLY:这是十六进制的多项式,通常省略最高位1,如x8 + x2 + x + 1,其二进制为100000111,转换为十六进制为0x07。 3. INIT:CRC的初始值,与WIDTH位宽相同。 4. REFIN:表示在计算前是否对原始数据进行翻转。 5. REFOUT:表示计算完成后是否对CRC值进行翻转。 6. XOROUT:计算结果与该值进行异或操作得到最终的CRC值。 在实际计算CRC时,首先确定这些参数。例如,对于CRC-8/MAXIM参数模型,假设原始数据为0x34,多项式为0x31。如果REFIN为true,那么需要先对原始数据进行翻转,再进行其他步骤。在CRC8的计算过程中,当遇到1时才进行异或,而不是1就简单地移位。 CRC的计算通常包括以下几个步骤: 1. 如果REFIN为true,原始数据先进行位翻转。 2. 原始数据左移至与WIDTH相匹配的位数,高位补零。 3. 将处理后的数据与多项式进行模2除法,取余数。 4. 余数与XOROUT进行异或。 5. 如果REFOUT为true,将结果进行位翻转,得到最终的CRC值。 CRC8是CRC的一种变体,用于8位数据的校验。它的校验原理与CRC基本相同,但可能有不同的多项式、初始化值和其他参数。CRC8在数据传输中有着广泛的应用,因为它计算简单,对传输错误有较高的检测率。 CRC还可以扩展到CRC16和CRC32,分别用于16位和32位数据的校验。这些更复杂的CRC版本可以提供更强的错误检测能力,适用于更大的数据块。在C语言中实现CRC算法,可以通过宏定义或其他编程技巧来实现不同CRC参数模型的通用性和可移植性。 CRC校验算法是一种有效的错误检测机制,它利用多项式除法的原理生成校验码,确保数据在传输和存储过程中的完整性。通过理解CRC的参数模型和计算过程,开发者可以针对特定应用选择合适的CRC类型,并在C语言等编程环境中实现相应的算法。
2024-09-12 11:09:23 1.18MB
1
Modbus CRC16校验算法是通信协议中广泛使用的一种错误检测机制,主要应用于工业自动化设备之间的数据交换,如PLC、RTU等。MFC(Microsoft Foundation Classes)是微软提供的一个C++类库,用于构建Windows应用程序。在这个场景中,我们将讨论如何在MFC程序中实现Modbus CRC16校验算法。 了解CRC16的基本原理至关重要。CRC,即循环冗余校验,是一种通过计算数据的二进制多项式余数来检查数据完整性的方法。CRC16涉及的是16位的CRC校验,它能够有效地检测出数据在传输过程中可能出现的一位或多位错误。 Modbus CRC16的计算过程通常包括以下几个步骤: 1. 初始化:设置CRC寄存器的初始值为FFFF(16进制)。 2. 位移操作:对于每个数据位,将CRC寄存器的每一位向左移一位,最右边的一位填充0。 3. 逻辑异或:将当前数据位与移位后的CRC寄存器进行异或操作。 4. 查表:使用预定义的CRC16查找表,根据异或结果找到对应的新CRC值。 5. 重复步骤2-4,直到处理完所有数据位。 6. 最终的CRC寄存器值就是CRC16校验和。 在MFC环境中实现这个算法,你需要创建一个函数,接受一个数据缓冲区作为输入参数,并返回CRC16校验和。以下是一个可能的实现: ```cpp #include // 预定义的Modbus CRC16查找表 const uint16_t crc16_table[] = { // ... 表格内容 ... }; uint16_t calculateCRC16(const char* data, size_t length) { uint16_t crc = 0xFFFF; for (size_t i = 0; i < length; ++i) { crc = (crc >> 8) ^ crc16_table[(crc ^ data[i]) & 0xFF]; } return crc; } ``` 在这个函数中,我们首先初始化CRC为FFFF,然后对每个数据字节执行位移、异或和查表操作。返回计算得到的CRC16值。 在实际应用中,你可能需要将这个函数整合到MFC的控件或消息处理中,例如在一个对话框中,用户输入或选择要校验的数据,点击“校验”按钮后调用`calculateCRC16`函数,并将结果显示在对话框中的某个控件上。 理解并实现Modbus CRC16校验算法在MFC程序中是一项重要的任务,它确保了数据的准确性和可靠性,特别是在工业通信系统中。通过编写和调试这样的代码,开发者可以深入理解数据校验机制,提高软件的稳定性和健壮性。
2024-08-14 16:16:13 32.68MB 源码软件
1
基于labview的Modbus checksum校验算法,亲测有效无误
2024-02-01 15:09:46 16KB labview crc
1
crc校验算法详解,英文版本的,可以自己对照了写程序。
2023-10-30 23:39:40 102KB crc校验
1
内容索引:Delphi源码,算法相关,算法,CRC  内含8位、16位、32位的CRC校验算法示例代码,生成多项式的值(多项式因子)    注意:CRC16是数据流的高位先计算,多项式因子不变   而CRC32和CRC8都是数据流的低位先计算,所以多项式因子的高/低位对调   比如CRC32由$04C11DB7变为$EDB88320,CRC8由$31变为$8C   16位CRC:按位计算,速度最慢,占用空间最少   注:数据流是高位先行      MCS51的CRC-16计算函数(多项式因子为$1021, 高位先行)   ; 调用:CRC16H/CRC16L=原CRC16值(16位,初始值为0
2023-06-06 10:50:45 173KB Delphi源代码 算法相关
1
C语言实现各种CRC算法。编译环境:VS2010。请参考我的博客https://blog.csdn.net/u013073067/article/details/86621770 分析代码
2022-10-13 19:33:09 552KB CRC
异或校验算法工具,输出异或校验的结果。
2022-08-06 09:00:21 241KB 异或校验
1
(Md5_Check(0x8000D000,87800,"3600C30A9C44D5E243BB99FBB77C970E")
2022-06-13 11:16:07 17KB MD5
1
内含8位、16位、32位的CRC校验算法示例代码,生成多项式的值(多项式因子) 注意:CRC16是数据流的高位先计算,多项式因子不变 而CRC32和CRC8都是数据流的低位先计算,所以多项式因子的高/低位对调 比如CRC32由$04C11DB7变为$EDB88320,CRC8由$31变为$8C 16位CRC:按位计算,速度最慢,占用空间最少 注:数据流是高位先行 MCS51的CRC-16计算函数(多项式因子为$1021, 高位先行) ; 调用:CRC16H/CRC16L=原CRC16值(16位,初始值为0000h),A=待计算数据(8位) ; 结果:CRC16H/CRC16L=计算后的CRC16值(16位) 16位CRC:生成CRC16表(256项),用于快速查表计算 在程序初始化时就先调用,预先生成CRC16Tab[256]查表数据 MCS51的CRC-16快速查表计算函数 ; 要预先生成CRC16查表数据,起始地址CRC16Tab,按高/低字节顺序存放(512字节) ; 调用:CRC16H/CRC16L=原CRC16值(16位,初始值为0000h),A=待计算数据(8位) ; 结果:CRC16H/CRC16L=计算后的CRC16值(16位) MCS51的CRC-8快速查表计算函数 ; 要预先生成CRC8查表数据,起始地址CRC8Tab,按顺序存放(256字节) ; 调用:B=原CRC8值(8位,初始值为00h),A=待计算数据(8位) ; 结果:B=计算后的CRC8值(8位) …………
2022-06-12 19:33:46 17KB Delphi源码-算法相关
1
IP首部校验算法.pdf
2022-05-21 11:00:57 359KB 算法 tcp/ip 源码软件 数据结构