在许多实际的数据挖掘应用程序中,例如文本分类,可以轻松获得未加标签的训练示例,但获得加标签的训练示例则相当昂贵。 因此,半监督学习算法引起了数据挖掘和机器学习领域的极大兴趣。 近年来,基于图的半监督学习已成为半监督学习社区中最活跃的研究领域之一。 本文提出了一种基于线性邻域模型的新颖的基于图的半监督学习方法,该方法假设每个数据点都可以从其邻域进行线性重构。 我们的算法称为线性邻域传播(LNP),可以使用这些线性邻域以足够的平滑度将标签从标记点传播到整个数据集。 本文对LNP的性质进行了理论分析。 此外,我们还导出了一种简单的方法来将LNP扩展到样本外数据。 对于合成数据,数字和文本分类任务,提出了有希望的实验结果。
2022-08-01 16:46:33 3.37MB data mining;graph theory;learning (artificial
1
基于标签传播概率的重叠社区发现算法
2022-05-02 14:07:14 929KB 文档资料
安全技术-网络信息-社会网络中基于标签传播的重叠社区挖掘研究.pdf
2022-04-29 16:00:52 2.98MB 文档资料 安全 网络
随着社区规模的不断扩大,基于标签传播思想的重叠社区发现算法得到较大发展。经典重叠社区发现算法虽然很好地利用了标签随机传播特性实现了重叠社区发现,但是也导致该算法输出结果很不稳定、社区生成质量较差。为克服采用最新的ClusterRank为所有节点排序降低随机性带来的结果稳定性差的弊端,引入最大社区节点数以控制最大社区节点数目,防止远大于其他社区的Monster出现。采用真实数据集和人工网络验证,结果证实,改良后算法可行有效。
1
Matlab实现的标签传播算法,希望对大家有帮助
2021-05-16 13:53:31 2KB 聚类
1
标签传播算法,能快速准确的识别网络社团,效率高,接近线性,但是对于二分图会产生震荡现象
2015-01-17 00:00:00 5KB LPA 社团
1