### 美团AI文章合集:机器学习与AI应用概览 #### 一、美团AI概况 **美团点评**作为一家全球领先的生活服务平台,在过去一年中为2800多个城区县提供超过200种不同类型的消费服务,日均订单量超过了2200万单,年度交易总额达到了3600亿元人民币。这一系列令人瞩目的成绩背后,离不开其强大的技术支撑。美团点评拥有一个近7000人的技术团队,覆盖了从前端到后台、系统到算法等多个技术领域。 #### 二、美团AI技术体系 美团点评的技术体系十分完备,包括但不限于: - **云计算平台**:基于主流开源技术和自主研发技术构建,能够高效支持大规模数据处理需求。 - **大数据平台**:用于存储、管理和分析海量数据,为业务决策提供强有力的数据支持。 - **人工智能与机器学习平台**:涵盖了机器学习模型训练、部署和维护等各个环节,支持各类业务场景下的智能化升级。 - **运维与安全保障系统**:确保系统的稳定运行和数据安全,有效应对潜在的安全威胁。 - **终端软硬件系统**:为消费者和商家提供便捷的服务体验,实现线上线下无缝连接。 #### 三、美团AI应用案例 美团点评在其官方博客和技术文章精选集中分享了多项AI应用场景和技术实践,以下是一些典型的应用案例: 1. **深度学习在推荐平台排序中的应用**:通过深度学习技术改进推荐系统的排序算法,提高推荐精度和用户体验。 2. **模型优化问题的探讨**:针对机器学习模型的训练过程中常见的优化难题,提出解决方案并分享实践经验。 3. **在线特征系统生产调度与数据存取技术**:介绍如何利用AI技术提升特征系统的效率和准确性,以及相关的数据管理和存取技术。 4. **即时配送的ETA预测与订单分配策略**:利用大数据和机器学习技术预测送达时间,并优化订单分配流程,提高配送效率。 5. **用户画像实践**:通过收集和分析用户行为数据,构建精细的用户画像,为个性化推荐提供依据。 6. **旅游推荐系统的演进**:分享了旅游推荐系统的发展历程和最新进展,包括如何利用AI技术改进搜索召回策略。 7. **广告场景化定向排序机制**:探讨如何通过AI技术实现更精准的广告定向,提高广告效果。 #### 四、大数据与数据分析实践 美团点评还在大数据处理和智能分析方面积累了丰富的经验,具体包括: 1. **数据平台融合实践**:介绍了如何将不同的数据源整合到统一的数据平台上,以支持更高效的数据分析和业务决策。 2. **酒旅数据仓库建设**:分享了酒旅业务数据仓库的建设和优化过程,以及如何通过数据驱动提升业务绩效。 3. **流计算框架Flink与Storm的性能对比**:对比了两种主流流计算框架的优缺点,为企业选择合适的技术栈提供参考。 4. **智能投放系统之场景分析最佳实践**:讨论了如何根据不同的业务场景设计最优的广告投放策略,以最大化ROI。 5. **指标逻辑树的最佳实践**:介绍了一种用于数据分析的方法论——指标逻辑树,帮助企业更好地理解和优化业务流程。 6. **酒旅BI报表工具平台开发实践**:分享了如何开发一套高效的BI报表工具平台,以支持酒旅业务的数据分析需求。 通过上述案例可以看出,美团点评不仅在技术创新方面取得了显著成就,而且也在不断努力将这些技术成果应用于实际业务场景中,从而不断提升用户体验和服务效率。随着AI和大数据技术的不断发展,未来美团点评还将继续探索新的应用场景,推动行业进步。
2025-09-16 10:07:38 22.24MB 机器学习 AI
1
本书深入讲解如何在资源受限的微控制器上部署机器学习模型,涵盖TensorFlow Lite、Edge Impulse和TVM等主流框架。通过Arduino Nano、Raspberry Pi Pico和SparkFun Artemis Nano等开发板,结合传感器数据实现端到端tinyML项目。内容包括模型训练、量化、优化及在实际硬件上的部署流程,适合希望将AI应用于物联网边缘设备的开发者。书中还介绍了关键词识别、音乐流派分类、物体检测等真实案例,帮助读者掌握低功耗、高性能的嵌入式AI解决方案。配套代码和数据集均开源,便于快速上手与扩展。
2025-09-16 01:23:18 42.77MB 机器学习 嵌入式系统
1
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 想轻松敲开编程大门吗?Python 就是你的不二之选!它作为当今最热门的编程语言,以简洁优雅的语法和强大的功能,深受全球开发者喜爱。该文档为你开启一段精彩的 Python 学习之旅。从基础语法的细致讲解,到实用项目的实战演练,逐步提升你的编程能力。无论是数据科学领域的数据分析与可视化,还是 Web 开发中的网站搭建,Python 都能游刃有余。无论你是编程小白,还是想进阶的老手,这篇博文都能让你收获满满,快一起踏上 Python 编程的奇妙之旅!
2025-09-15 22:11:01 3.93MB Python
1
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 想轻松敲开编程大门吗?Python 就是你的不二之选!它作为当今最热门的编程语言,以简洁优雅的语法和强大的功能,深受全球开发者喜爱。该文档为你开启一段精彩的 Python 学习之旅。从基础语法的细致讲解,到实用项目的实战演练,逐步提升你的编程能力。无论是数据科学领域的数据分析与可视化,还是 Web 开发中的网站搭建,Python 都能游刃有余。无论你是编程小白,还是想进阶的老手,这篇博文都能让你收获满满,快一起踏上 Python 编程的奇妙之旅!
2025-09-15 22:04:15 4.37MB Python
1
适合用于composition任务中为合成物体添加阴影,或者阴影检测、去除等任务。一组数据包含有阴影、无阴影、阴影mask、实例mask等
2025-09-15 17:42:17 861.6MB 机器学习 图像复原
1
【SSL-RL】自监督强化学习:事后经验回放 (HER)算法 事后经验回放,Hindsight Experience Replay (HER) 是一种在稀疏奖励强化学习环境下提高智能体学习效率的策略。稀疏奖励问题是指智能体在多数状态下无法获得有价值的反馈,因为奖励信号极其稀少或完全没有。HER通过回顾智能体过去未能实现的目标,将这些“失败”的经验转换为有价值的学习机会,从而极大地提高了智能体在稀疏奖励场景中的学习效率。 HER算法最早由OpenAI团队提出,主要用于解决目标导向的强化学习任务,其中智能体的目标是达到某个特定的状态(例如到达某个地点或完成某个任务),但由于奖励稀疏,智能体很难获得足够的反馈进行有效学习。(这已经是被广泛利用的机制了)
2025-09-11 18:45:13 3KB 机器学习 人工智能 项目资源
1
只要任何集成uiview的类,通过导入该分类,引入头文件,一行代码即可以方便给图片或者view添加水印
2025-09-11 13:32:33 2KB ios 数据挖掘 人工智能 机器学习
1
内容概要:本文介绍了基于Kerala数据集的洪水暴雨内涝预测模型,旨在利用机器学习算法预测洪水发生的可能性。文中详细探讨了五种机器学习算法——KNN分类、逻辑回归、支持向量机、决策树和随机森林的具体应用及其优劣。通过对Kerala地区的降雨数据进行建模和验证,最终选出了表现最优的模型。文章不仅提供了完整的代码示例和注释,还涵盖了数据预处理、特征选择、模型训练与评估等多个关键环节。 适合人群:对机器学习感兴趣的研究人员、数据科学家以及希望了解如何运用机器学习解决实际问题的技术爱好者。 使用场景及目标:适用于需要进行自然灾害预测的机构和个人,特别是那些关注洪水、暴雨和内涝等气象灾害的人群。通过学习本文,读者能够掌握如何构建和优化机器学习模型,从而为防灾减灾提供科学依据。 其他说明:虽然本文主要聚焦于洪水预测,但它所涉及的方法论同样适用于其他类型的自然灾难预测任务,如地震预警、台风路径预测等。此外,文中提供的代码和数据集可以帮助读者快速上手实践,进一步加深对机器学习的理解。
2025-09-11 09:44:22 644KB 机器学习 数据挖掘 决策树 随机森林
1
《统计学习方法》是李航教授撰写的一本经典机器学习教材,系统介绍了统计学习的基本概念、核心算法和理论推导,涵盖感知机、朴素贝叶斯、决策树、支持向量机、隐马尔可夫模型等方法。语言简洁、数学推导清晰,是理解传统机器学习原理、构建理论基础的重要读物,深受学生与工程师欢迎。 统计学习方法是现代数据科学和人工智能领域的基础学科之一。李航教授所著的《统计学习方法》是机器学习领域中一本极具价值的教材,旨在向读者介绍统计学习的基本概念、核心算法以及理论推导,帮助读者深入理解并掌握统计学习的内在机理。 书中详细阐述了多种经典的统计学习模型和算法,包括感知机模型、朴素贝叶斯分类器、决策树、支持向量机(SVM)以及隐马尔可夫模型(HMM)。这些方法覆盖了从线性到非线性,从简单到复杂的各种机器学习问题的处理方法。 感知机模型是最早的线性二分类模型之一,它通过学习来区分两个不同的类别。朴素贝叶斯分类器则是基于贝叶斯定理和特征条件独立的假设来完成分类任务,它简单、有效,广泛应用于文本分类等领域。 决策树通过一系列的问题来进行决策,其模型形式直观易懂,可以处理各类特征数据,并且具有良好的解释性。支持向量机是处理高维数据分类问题的有力工具,通过最大化两个类别之间的边界来构建最优分类超平面,其鲁棒性与泛化能力较强。 隐马尔可夫模型则是处理时间序列数据或具有时间动态性数据的一类重要模型,它通过构建状态转移概率和观测概率来解释序列数据的生成过程,广泛应用于语音识别、自然语言处理等领域。 这本书不仅仅介绍了这些模型和算法本身,更重要的是对这些方法背后的数学原理和理论推导进行了深入的探讨。通过对每一个模型的数学建模、算法推导和优化过程的详细描述,为读者提供了构建理论基础和深入研究的可能。 《统计学习方法》的特点是语言表达的简洁性与数学推导的严谨性,它的编写风格有助于读者更快地理解和吸收复杂的理论知识。它不仅仅适用于初学者,对于有一定基础的学生和工程师也有很大的帮助,是他们构建机器学习理论体系、提升理论深度和实践应用能力的极佳读物。因此,该书深受广大学生、研究人员及工程师的喜爱,是学习统计学习方法不可或缺的参考资料。 本书的系统性和深度,对于希望从理论角度深化理解传统机器学习的读者来说,是非常宝贵的。通过阅读本书,读者不仅可以获得模型和算法的知识,还可以学习到如何通过统计学习方法来解决实际问题,以及如何对模型进行分析和评价,这对于从事数据科学和人工智能领域的专业人员来说是至关重要的。
2025-09-10 16:33:15 17.56MB 机器学习
1
【基于机器学习的网络异常流量检测方法】 网络异常流量检测是网络安全领域的重要研究课题,它涉及到互联网技术的快速发展和日益复杂的网络环境。异常流量数据,包括Alpha Anomaly、DDoS、Port Scan等不同类型的异常流量,对个人和国家的计算机安全构成严重威胁。这些异常流量可能源于恶意行为或网络软硬件故障,导致网络稳定性下降和潜在的安全隐患。 1. 网络异常流量类型 - Alpha Anomaly 异常流量:这种流量指的是高速点对点的非正常数据传输,其特征主要体现在字节数和分组数的异常增加。 - DDoS 异常流量:分布式拒绝服务攻击,通过大量源头向单一目标发送请求,导致服务瘫痪。检测特征包括分组数、源IP地址、流计数和目的IP地址。 - Port Scan 异常流量:针对特定端口的探测活动,可能是为了寻找漏洞或进行入侵。检测特征通常涉及目的端口总数。 - Network Scan 异常流量:更广泛的网络扫描行为,尝试发现网络中的弱点。检测特征可能涵盖目的IP总数、源IP总数等。 - Worms 异常流量:蠕虫病毒传播导致的流量异常,可能导致网络拥堵。 - Flash Crowd 异常流量:短时间内大量用户访问同一资源,如热门事件或新闻报道,可能会对服务器造成压力。 2. 机器学习在检测中的应用 传统检测方法如基于规则的系统和统计模型在应对复杂异常流量时往往力不从心。因此,研究者转向了机器学习,利用其自适应性和泛化能力来提高检测效率和准确性。文中提到的改进型ANFIS(Adaptive Neuro-Fuzzy Inference System)算法是一种融合模糊逻辑和神经网络的智能模型,能有效处理非线性问题。 - 改进型ANFIS算法:针对传统神经网络算法(如BP神经网络)在训练过程中可能出现的局部最小值问题,通过附加动量算法优化模型参数,提高训练效率并避免陷入局部最优,从而提升检测性能。 3. 性能比较 通过KDD CUP99数据集和LBNL实验室的数据进行测试,改进型ANFIS算法相对于BP神经网络显示出更高的训练效率和检测准确率。这表明机器学习方法在异常流量检测中具有显著优势,能够更好地适应不断变化的网络环境和新的威胁模式。 基于机器学习的网络异常流量检测方法,如改进型ANFIS,为网络安全提供了一种有效且灵活的解决方案。通过对各种异常流量类型的深入理解,结合先进的算法,可以增强网络防御能力,保护网络资源免受恶意攻击。未来的研究将继续探索更高效、更精准的检测技术,以应对不断演变的网络威胁。
2025-09-09 16:51:50 1.4MB
1