电子病历,作为医疗信息化的重要组成部分,记录了患者的病史、检查结果、治疗过程等关键信息,对临床诊断、治疗和疾病研究都具有不可替代的价值。然而,电子病历时序数据通常带有高噪声和非平稳特性,这对于数据处理与分析带来了很大挑战。传统模型在处理此类复杂数据时往往存在局限性,无法很好地提取关键信息并进行准确预测。 为了解决这一问题,本文提出了一种名为VMD-LSTM的混合模型。该模型的核心是“分解-预测-集成”的框架。利用变分模态分解(VMD)方法,将原始病历时序数据分解成若干个相对平稳的本征模态函数(Intrinsic Mode Functions, IMFs)。这一步骤有效地减少了数据中的噪声,并使后续的预测工作变得更加可行。 接下来,针对分解后的每个IMF分量,使用长短时记忆网络(Long Short-Term Memory, LSTM)进行时序预测。LSTM是一种特殊的循环神经网络(RNN),它拥有学习长期依赖信息的能力,非常适合处理和预测时间序列数据中的重要事件。 为了进一步提高预测精度,VMD-LSTM模型引入了参数自适应优化策略,如CPO(Constrained Parameter Optimization)算法,用于优化关键参数K和α。通过这种策略,模型能够更好地捕捉数据中的动态变化,同时适应不同患者情况下的病历数据特性。 研究的核心结果显示,VMD-LSTM模型在进行时序预测时取得了显著的性能提升。与单一使用LSTM模型(均方根误差RMSE为0.86,平均绝对误差MAE为0.62)和传统的经验模态分解与LSTM结合的EMD-LSTM模型(RMSE为0.63,MAE为0.45)相比,VMD-LSTM模型的预测精度最高,RMSE和MAE分别达到0.51和0.38。这些成果表明,VMD-LSTM模型在处理电子病历时序数据时,具有更高的预测精度和鲁棒性。 对于临床工作来说,这样的高精度时序分析工具具有重要价值。尤其是在ICU(重症监护室)环境下,医生需对患者病情进行实时监控和风险评估,准确的时序预测可以显著提高监护效率,提前识别患者病情的潜在风险,从而为患者提供更加精确及时的医疗服务。此外,该模型在疾病研究和医疗大数据分析领域也展现了广阔的前景和应用潜力,有助于提高医疗数据的使用价值和分析深度。 VMD-LSTM模型的研究,不仅为我们提供了一个处理高噪声电子病历时序数据的有效工具,更为后续相关研究提供了新的思路和方法。通过该模型的临床转化应用,有望在提高医疗服务质量、降低医疗成本等方面发挥重要作用。
2025-09-21 23:38:41 46KB 电子病历
1
内容概要:本文介绍了如何利用Matlab编写基于LSTM(长短期记忆网络)和多头注意力机制的数据分类预测模型。该模型特别适用于处理序列数据中的长距离依赖关系,通过引入自注意力机制提高模型性能。文中提供了完整的代码框架,涵盖从数据加载到预处理、模型构建、训练直至最终评估的所有关键环节,并附有详细的中文注释,确保初学者也能轻松上手。此外,还展示了多种可视化图表,如分类效果、迭代优化、混淆矩阵以及ROC曲线等,帮助用户直观地理解和验证模型的表现。 适合人群:面向初次接触深度学习领域的研究人员和技术爱好者,尤其是那些希望通过简单易懂的方式快速掌握LSTM及其变体(如BiLSTM、GRU)和多头注意力机制的应用的人群。 使用场景及目标:① 对于想要探索时间序列数据分析的新手来说,这是一个理想的起点;② 提供了一个灵活的基础架构,允许用户根据自己的具体任务需求调整模型配置,无论是分类还是回归问题都能胜任;③ 借助提供的测试数据集,用户可以在不修改代码的情况下立即开始实验,从而加速研究进程。 其他说明:为了使代码更加通用,作者特意设计了便于替换数据集的功能,同时保持了较高的代码质量和可读性。然而,某些高级特性(如ROC曲线绘制)可能需要额外安装特定版本的Matlab或其他第三方库才能完全实现。
2025-08-08 23:22:44 1.34MB
1
内容概要:本文详细介绍了如何使用MATLAB实现一个基于贝叶斯优化的Transformer-BiGRU分类模型。首先简述了Transformer和BiGRU的基本原理及其在处理时序数据方面的优势。接着,文章深入讲解了贝叶斯优化的概念及其在参数调优中的应用。随后提供了完整的MATLAB代码框架,涵盖数据加载与预处理、模型定义、贝叶斯优化、模型训练与预测、结果可视化的各个环节。通过具体实例展示了该模型在光伏功率预测等场景中的优越表现。 适合人群:对机器学习和深度学习感兴趣的研究人员和技术爱好者,特别是有一定MATLAB基础的初学者。 使用场景及目标:适用于需要处理时序数据的任务,如光伏功率预测、负荷预测等。目标是帮助读者理解和实现一个高效的时序数据分析工具,提高预测精度。 其他说明:文中提供的代码框架简洁明了,附带详细的注释和直观的图表展示,便于快速上手。同时提醒了一些常见的注意事项,如数据归一化、环境配置等,确保代码顺利运行。
2025-08-08 23:18:42 3.17MB
1
内容概要:本文详细介绍了如何使用Python实现基于贝叶斯优化(BO)、卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的时序数据回归预测模型。首先阐述了项目背景,指出了传统回归模型在处理非线性、时序性强的数据时的不足,强调了CNN和BiLSTM结合的优势。接着描述了项目的目标与意义,包括构建BO-CNN-BiLSTM回归模型、实现贝叶斯优化的超参数调节、提升预测精度与鲁棒性以及验证模型的可扩展性和泛化能力。随后讨论了项目面临的挑战,如数据预处理、贝叶斯优化的计算开销、卷积神经网络与双向LSTM的融合等问题。最后展示了模型的具体架构设计和代码示例,涵盖数据预处理、模型搭建、训练及贝叶斯优化的部分。 适合人群:对深度学习、时序数据分析感兴趣的科研人员和技术开发者,尤其是有一定Python编程基础的人群。 使用场景及目标:适用于金融市场预测、气象预测、能源需求预测、智能制造与设备监控、医疗健康预测等领域,旨在提高时序数据回归预测的精度和泛化能力。 其他说明:文中提供了完整的代码示例,便于读者理解和复现。此外,还探讨了模型的创新点,如结合CNN与BiLSTM的复合模型、引入贝叶斯优
2025-07-14 11:30:23 38KB 深度学习 贝叶斯优化 BiLSTM 时序数据
1
时序预测是数据分析和机器学习领域的一个重要分支,它主要关注的是如何基于历史时间序列数据来预测未来的数据点。在进行时序预测时,数据集的选择至关重要,它直接关系到模型的训练效果和预测准确性。本篇文章将详细介绍几个在时序预测算法中常用的公开数据集,并分析它们的特点和适用场景。 ECL.csv数据集通常代表电子消费记录,这种数据集能够反映消费者的购买习惯和消费模式。它在零售行业的时序分析中非常有用,比如预测特定商品的销售趋势,帮助商家制定库存管理和促销策略。 ETTh1.csv和ETTh2.csv是两个环境温度数据集,分别代表了不同时间段的温度记录。这类数据集在能源管理和气候变化研究中具有重要应用。例如,可以用来预测未来的电力需求,优化电力供应策略,或者分析环境温度变化趋势,为应对气候变化提供决策支持。 ETTm1.csv和ETTm2.csv数据集可能是针对某种特定环境或情境下的温度记录,它们与ETTh1.csv和ETTTh2.csv类似,但是在某些细节上可能有所不同,比如测量频率或是记录的时间跨度。这些数据集同样适用于能源消耗预测、环境监测和气候分析等领域。 EXR.csv指的是某种货币汇率的时序数据。汇率波动对国际商贸和金融市场有着深远的影响,利用汇率时序数据进行分析,可以帮助投资者和决策者预测汇率变动趋势,为国际贸易和外汇市场投资提供参考。 ILl.csv数据集可能代表了某种工业生产线的运行记录。这类数据集通常包含了生产线的运行状态、故障记录、生产量等信息。通过分析这些数据,可以优化生产流程、减少停机时间、预测设备维护需求,从而提高整体生产效率。 m4.csv数据集是由著名的M比赛系列中的M4比赛提供的,它是一个综合性的时序数据集,包含了多种不同类别的时序数据,如经济指标、市场数据、气象数据等。由于其多样性和广泛性,M4数据集在评估和比较不同时间序列预测方法上具有极高的价值。 stock.csv数据集则是关于股票市场的时序数据,它包含了股票的开盘价、最高价、最低价、收盘价和成交量等信息。该数据集广泛应用于金融市场的分析和预测,帮助投资者对股市走向做出更为理性的判断。 TRF.csv数据集可能指某种交通流量记录,这类数据集对于城市规划和交通管理具有重要意义。通过分析交通流量数据,可以预测交通高峰期,优化交通信号控制,减少交通拥堵,提高城市交通运行效率。 WTH.csv数据集可能代表天气相关的时序数据,包括温度、湿度、风速等信息。这些数据对于气象预测、农业种植、能源消耗预测等方面都有着重要的应用价值。 总体来说,上述数据集各有其独特的应用场景和研究价值。在进行时序预测时,研究者和数据科学家需要根据具体的研究目标和实际需求,选择合适的时序数据集,并运用适当的数据预处理和模型训练方法来提取数据中的有价值信息,从而做出准确的预测。在实践中,多数据集的综合分析和模型的跨领域应用,往往会带来意想不到的效果和启示。
2025-04-23 14:40:48 156.46MB 时序数据集
1
上海大学《机器学习》课程项目,选题时序数据预测
2023-02-28 19:09:43 921KB 时序数据
1
针对遥感长时序数据进行MK突变点检验,亲测可用,并在MATLAB中生成折线图
2022-10-19 15:46:59 5KB mk突变检验 时序数据 MK 突变检验
1
时序数据-深度学习DNN-多步模式预测学习代码
2022-10-10 12:05:36 10KB 时序模型 深度学习 python
1
时序数据-深度学习DNN-多输出模式预测学习代码
2022-10-10 12:05:35 10KB 时序模型 深度学习 python
1
时序数据-深度学习DNN-数据集
2022-10-10 12:05:34 744KB 时序模型 数据集
1