Xilinx FPGA SRIO 接口Verilog源码,封装FIFO接口,支持多种事务处理,附操作文档与许可文件,xilinx FPGA srio 接口verilog源码程序,顶层接口封装为fifo,使用简单方便,已运用在实际项目上。 本源码支持srio NWRITE、NWRITE_R、SWRITE、MAINTENCE、DOORBELL等事务。 1、提供srio源码 2、提供srio license文件 3、提供操作文档 ,Xilinx FPGA; SRIO 接口; Verilog 源码程序; 顶层接口封装; FIFO; NWRITE 事务; NWRITE_R 事务; SWRITE 事务; MAINTENCE 事务; DOORBELL 事务; srio 源码; srio license 文件; 操作文档。,Xilinx FPGA SRIO接口Verilog源码:高效封装FIFO事务处理程序
2025-09-10 14:09:47 1.36MB xbox
1
Xilinx FPGA SRIO 接口Verilog源码程序合集:高效FIFO封装,支持多种事务操作与文档齐全,Xilinx FPGA SRIO接口Verilog源码:FIFO封装、事务全面支持及操作文档齐全,xilinx FPGA srio 接口verilog源码程序,顶层接口封装为fifo,使用简单方便,已运用在实际项目上。 本源码支持srio NWRITE、NWRITE_R、SWRITE、MAINTENCE、DOORBELL等事务。 1、提供srio源码 2、提供srio license文件 3、提供操作文档 ,Xilinx FPGA; srio 接口; verilog 源码; 顶层接口封装; 事务类型(NWRITE、NWRITE_R、SWRITE、MAINTENCE、DOORBELL); srio 源代码; srio license 文件; 操作文档。,Xilinx FPGA SRIO接口Verilog源码:高效封装FIFO事务处理程序
2025-09-10 14:00:15 8.36MB csrf
1
l 每笔交易均包括交易发生的时间,交易品种,交易品种,价格和交易数量。 使用FIFO匹配计算PnL。 可以直接打印所有交易和PnL,也可以存储交易。 前任: 时间,符号,边,价格,数量 2,AAPL,B,32.58,300 2,GOOG,S,1100.48,200 7,AAPL,S,40.07,3000 10,GOOG,S,1087.07,300 12,GOOG,B,1034.48,500 变成 OPEN_TIME,CLOSE_TIME,SYMBOL,QUANTITY,PNL,OPEN_SIDE,CLOSE_SIDE,OPEN_PRICE,CLOSE_PRICE 2,7,AAPL,300,2247.00,B,S,32.58,40.07 2,12,GOOG,200,13200.00,S,B,1100.48,1034.48 10,12,GOOG,300,15777.0
2025-09-08 23:15:56 2KB Python
1
内容概要:本文详细介绍了基于SAP ECC系统针对俄罗斯地区客户的特定业务处理—即俄罗斯自动清账操作方法。主要围绕事务代码J3RCALD (针对客户) 和 J3RCALK (面向供应商),并着重指出了启动该项功能所需的前提条件、具体的清账规则与配置设置以及不同执行模式的选择。文章还对清账时所使用的具体选项,如选择按凭证日期或是过账日期来对客户进行FIFO清账的方法、是否允许存在残差条目等问题做了细致讨论。通过实例演示了如何进行正确配置以及测试验证。 在SAP ECC系统中,为了满足俄罗斯地区的特定业务处理需求,实现客户和供应商的自动清账是企业提高效率的重要手段。本文详细解析了如何在SAP ECC环境下实施俄罗斯客户的自动清账操作,涉及到的事务代码、配置设置以及清账规则等方面的知识。 介绍的事务代码J3RCALD和J3RCALK分别用于处理客户的自动清账和供应商的自动清账。在具体操作之前,需要确保系统已激活相应的俄罗斯本地化包,ECC及以上版本系统默认激活,其他版本则需要手动激活。在配置方面,需要放开凭证编号(BELNR)、凭证日期(BLDAT)、过账日期(BUDAT)和行项目(BUZEI)等字段的配置,为后续的清账操作提供必要条件。 清账逻辑采用的是先进先出(FIFO)方式,按照指定的字段进行排序,例如凭证日期、过账日期或自定义的分配字段。在实际清账时,可以通过凭证日期或过账日期来对客户进行排序和清账,并可选择是否允许存在残差条目,以实现完全清账或部分清账。 在执行清账操作时,有三种运行模式可供选择:直接执行、批量输入和测试运行。直接执行即实时处理当前的清账任务;批量输入则是批量处理一定范围内的清账任务;测试运行则用于在正式处理前进行验证,确保配置正确无误。 在清账选项中,可以选择是否需要参考凭证日期或过账日期进行清账。清账规则的选择尤为重要,用户可以根据实际业务需求选择多借多贷的清账方式,或者分别指定发票方和支付方的凭证范围。对于是否需要发票参考以及如何进行清账,都是配置清账规则时需要考虑的要素。 清账文档部分主要涉及到清账凭证的相关信息,其中差异原因代码是关键因素之一。在现金流的等价物科目维护中,客户和供应商清账通常不涉及差异原因代码。清账规则的设定将决定清账方式,比如多发票和多付款的清账方式,以及是否需要发票参考,以及清账时是否可以存在剩余未清项。 在实际操作过程中,选择适当的清账规则对于实现自动清账功能至关重要。例如,如果选择按照过账日期进行FIFO清账,那么系统将会按照过账日期的先后顺序来清账,直至一方的所有清账项被清完为止。清账效果的正确性直接关系到财务数据的准确性,因此需要仔细核对Cleared一列的数据。 文章还通过实例演示了如何进行正确配置以及测试验证,确保整个自动清账流程的顺利执行。为了更好地理解这一操作,可以参考提供的链接资源,以便获取更多详细信息和操作指导。 对于需要在SAP ECC系统中实施俄罗斯客户与供应商自动清账的企业来说,理解并熟练运用上述提到的事务代码、配置设置、清账规则和运行模式等关键知识点,将帮助他们更有效地处理财务清账业务,优化财务流程,提升企业运营效率。
2025-08-17 23:13:13 539KB FIFO
1
本文档为《AN143-CMT2300A_FIFO和包格式使用指南V1.1》,旨在介绍CMT2300A芯片中的FIFO(First In First Out,先进先出)队列的工作原理、寄存器配置以及包格式的设置方法。文档提供了对CMT2300A芯片在收发数据时FIFO的管理、中断时序的设置以及应用场景的详细说明。此外,还涵盖了包格式的配置,包括数据模式、Preamble、SyncWord配置等内容。文档还包含GPIO和中断系统的配置方法,以及一些用于演示FIFO读写操作和GPIO中断配置函数的示例代码。 一、FIFO工作原理 FIFO是CMT2300A芯片中用于数据暂存的一种队列结构,主要功能是在数据的接收(RX)和发送(TX)过程中缓冲数据。文档详细解释了与FIFO相关的寄存器配置和工作模式,以及在不同应用场景下的中断时序和操作方法。 1. FIFO相关寄存器 在配置FIFO时,用户需要对应地设置RFPDK(Radio Frequency Programming and Development Kit)上的参数。例如,DataMode寄存器项在RFPDK界面上不显示,需要用户在应用程序中灵活配置。FIFO_TH寄存器则用于自动计算发射包数量,并在数量大于1个包时设置为1。FIFO_AUTO_RES_EN寄存器比特用于决定每次发完一个数据包后是否自动恢复TXFIFO。 2. FIFO工作模式 CMT2300A提供了不同的数据处理模式,包括Direct模式和Packet模式。其中,DataMode<1:0>寄存器的内容和解释是核心部分,决定了芯片在数据处理时的操作模式。 3. FIFO中断时序 FIFO的中断时序是指FIFO在数据收发时触发中断的时机,这对于正确管理数据传输过程非常重要。 4. FIFO应用场景 文档提供了多种FIFO的应用场景,例如在RX模式下接收数据,预先填好数据进入TX发射,或者在TX模式下一边接收数据一边发射。这些应用场景的解释有助于用户根据具体需求进行配置。 二、包格式介绍 CMT2300A芯片支持灵活的数据包格式配置,包括数据模式、Preamble、SyncWord、数据包总体配置、NodeID、FEC、CRC、编解码配置等。每一种配置都有其对应的寄存器,用户可以根据应用场景来设置这些参数,以满足不同的通信需求。 1. 数据模式配置 包括决定数据处理模式的DataMode寄存器的配置,以及FIFO阈值的设置等。 2. Preamble和SyncWord配置 分别用于设置数据包前导码和同步字,是数据通信中用于同步的重要部分。 3. 数据包总体配置 涉及到数据包的长度、格式和校验等设置。 4. NodeID配置 用于设置网络中设备的唯一ID。 5. FEC和CRC配置 前向纠错(FEC)和循环冗余校验(CRC)是为了保证数据传输的准确性和可靠性。 三、GPIO和中断 除了FIFO和包格式的配置之外,文档还介绍了如何配置GPIO(通用输入输出)引脚和中断系统。这部分内容包括GPIO的配置,中断的配置和映射,以及天线TX/RX切换控制。 1. GPIO的配置 用于设置GPIO引脚的功能和模式。 2. 中断的配置和映射 用于配置和映射中断源,以便在特定事件发生时触发中断。 3. 天线TX/RX切换控制 用于控制天线的发送和接收模式切换。 四、附录和变更记录 文档附录部分提供了FIFO读写操作和GPIO输出中断配置函数的示例代码。变更记录则记录了本文档自发布以来的所有版本更新情况。联系方式部分提供了文档编制单位的联系信息。 本文档为用户提供了全面的指导,包括如何配置和使用CMT2300A芯片中的FIFO队列、设置数据包格式以及管理GPIO和中断系统。通过阅读本文档,用户可以更有效地利用CMT2300A芯片进行无线数据通信和处理。
2025-08-17 09:16:03 1.47MB
1
页面置换算法是操作系统中的核心组件,用于管理计算机的内存系统,确保系统高效运行。在实际操作系统中,物理内存的大小通常远远小于虚拟地址空间,因此需要合理的算法来管理物理内存,当程序运行时所需的页面不在内存中时,选择将哪个页面置换出去,以便加载新页面。FIFO、LRU、OPT、NUR和LFU是五种典型的页面置换算法,它们各自具有不同的特点和适用场景。 FIFO(First-In-First-Out)算法是最早出现的页面置换算法,基于先进先出的原则,假设最早装入内存的页面不再被使用,因此当需要替换时,FIFO会置换最早进入内存的页面。该算法实现简单,但可能会导致“Belady异常”,即在某些情况下,增加内存页面反而使得缺页率增加。 LRU(Least Recently Used)算法基于一个假设:如果一个页面很久没有被访问,那么在未来它也不太可能被访问。因此,LRU算法总是淘汰最长时间未被访问的页面。LRU算法能够较好地反映程序的局部性原理,但实现成本较高,特别是在实际操作中,需要维护一个访问记录链表。 OPT(Optimal)算法是一种理想化的算法,它总是淘汰未来最长时间内不会被访问的页面,因此它能保证最低的缺页率。然而,由于OPT需要预知未来的页面访问序列,因此在实际中无法直接使用。不过,OPT常常作为评估其他页面置换算法的标准。 NUR(Not Recently Used)算法是LRU算法的一种近似,通过维护两个列表来区分页面的使用情况:一个用于记录最近使用的页面,另一个用于记录未使用的页面。在选择页面替换时,NUR算法会优先考虑两个列表中都未出现的页面进行置换,这降低了实现的成本,同时避免了频繁扫描整个内存的开销。 LFU(Least Frequently Used)算法则基于一个假设:一个页面在最近一段时间内被访问的频率较低,那么在未来一段时间内它被访问的频率也可能会保持较低。因此,LFU算法淘汰访问频率最低的页面。LFU算法可能会受到历史数据的影响,特别是在程序访问模式发生变化时,可能无法正确反映当前的页面使用情况。 在上述实验报告中,学生们需要通过随机数产生指令序列,模拟不同页面访问模式。指令序列需要转换为页地址流,并且设置不同的用户内存容量,然后通过编写函数来计算FIFO、LRU、OPT、NUR和LFU五种页面置换算法在不同内存容量下的命中率。通过这些实验步骤,学生不仅能够加深对页面置换算法的理解,还能学会如何通过编程实现这些算法,并评估它们的性能。 实验的步骤包括定义数据结构、初始化变量、编写核心函数来模拟算法流程,最终输出不同算法在不同内存容量下的命中率。其中,数据结构包括页面结构、页帧控制结构、指令流数组、页面失效次数和用户进程内存页帧数等,核心函数涉及页面的装入、缺页判断、页面置换和命中率计算等。 页面置换算法是操作系统中用于内存管理的关键技术,通过理解并实现FIFO、LRU、OPT、NUR和LFU等算法,可以有效提升计算机系统的性能和效率。而通过设计性实验,可以更加直观地了解这些算法的实现细节和性能差异,为系统设计和优化提供重要参考。
2025-04-18 16:35:49 445KB 操作系统 存储管理 页面置换算法
1
内容概要:本文档详细介绍了QST公司生产的QMI8A01型号的6轴惯性测量单元的数据表及性能参数。主要内容包括设备特性、操作模式、接口标准(SPI、I2C与I3C),以及各种运动检测原理和技术规格。文中还提到了设备的工作温度范围宽广,内置的大容量FIFO可用于缓冲传感器数据,减少系统功耗。此外,对于器件的安装焊接指导亦有详细介绍。 适合人群:电子工程技术人员、嵌入式开发人员、硬件设计师等。 使用场景及目标:适用于需要精准测量物体空间位置变化的应用场合,如消费电子产品、智能穿戴设备、工业自动化等领域。帮助工程师快速掌握该款IMU的技术要点和应用场景。 其他说明:文档提供了详细的电气连接图表、封装尺寸图解等资料,方便用户进行电路板的设计制作。同时针对特定应用提出了一些优化建议。
2025-04-09 10:49:22 3.3MB MEMS传感器 Sensor FIFO 低功耗模式
1
在电子设计领域,FIFO(First In First Out,先进先出)是一种常用的数据存储结构,尤其在数字系统和嵌入式系统中,如周立功开发板上的ProASIC3实验中,FIFO常用于实现数据缓冲,确保数据传输的同步。在给定的文件列表中,我们看到有四个相关的Verilog源文件:ctrl_FIFO.v、rec.v、send.v和FIFO_top.v,它们分别可能对应FIFO的不同组件或整个FIFO的设计。 1. **FIFO的基本概念**: FIFO是一种特殊的队列,遵循先进先出的原则,即最早存入的数据最早被取出。在数字系统中,FIFO常用于解决不同速度的模块间的数据传输问题,例如,当一个模块以较慢的速度产生数据,而另一个模块以较快的速度消耗数据时,FIFO可以作为一个临时存储,避免数据丢失或溢出。 2. **ProASIC3 FPGA**: ProASIC3是Actel公司(现被Microsemi收购)推出的一款现场可编程门阵列(FPGA),它提供了丰富的逻辑资源、I/O引脚和嵌入式存储器,适合于各种数字系统设计,包括嵌入式控制、接口转换、信号处理等应用。 3. **Verilog语言**: Verilog是硬件描述语言的一种,用于描述数字系统的结构和行为,是FPGA和ASIC设计中的标准语言。在这些源文件中,ctrl_FIFO.v可能是FIFO的控制逻辑,rec.v可能是接收端的逻辑,send.v可能是发送端的逻辑,而FIFO_top.v很可能是整个FIFO设计的顶层模块。 4. **FIFO的组成**: 一个典型的FIFO包括数据存储单元(如RAM)、读写指针(WR_PTR和RD_PTR)、读写控制逻辑以及状态检测(如空、满标志)。在Verilog代码中,这些组件通常通过综合工具生成硬件电路。 5. **FIFO的工作原理**: 当数据写入FIFO时,写指针加1,当数据从FIFO读出时,读指针加1。如果写指针和读指针相同,则表示FIFO为空;如果写指针即将追上读指针(根据FIFO的大小),则表示FIFO将满。这些状态信息对系统设计至关重要,以避免数据丢失或损坏。 6. **设计要点**: - **同步与异步**:FIFO可以是同步的(所有操作基于同一个时钟)或异步的(读写操作基于不同的时钟域),异步FIFO设计更为复杂,需要考虑时钟域交叉问题。 - **深度**:FIFO的存储容量(深度)需要根据具体应用来确定,以满足数据传输的延迟要求。 - **握手协议**:读写操作之间通常需要握手协议,以确保数据的正确传输和同步。 7. **Verilog实现细节**: - **寄存器和存储器**:在Verilog中,用reg关键字声明寄存器,用memory关键字声明存储器。 - **状态机**:控制逻辑通常会包含一个状态机来管理FIFO的操作流程。 - **边界处理**:处理读写指针达到存储器边界的情况,比如循环缓冲或重置指针。 通过对这些Verilog文件的分析,我们可以深入了解FIFO的内部工作原理和ProASIC3开发板上如何实现这个功能。每个源文件都包含着特定的功能,组合起来形成完整的FIFO系统,为数据传输提供高效可靠的解决方案。在实际设计中,还需要考虑到功耗、面积和速度等因素,以优化FPGA资源的使用。
2025-01-09 11:54:59 4KB FIFO
1
STM32F103C8T6是意法半导体(STMicroelectronics)生产的一款基于ARM Cortex-M3内核的微控制器,属于STM32系列的入门级产品。这款MCU具有高性能、低功耗的特点,广泛应用于各种嵌入式系统设计中。OV7670则是一款常见的CMOS摄像头传感器,常用于小型电子设备如机器人、无人机或物联网设备的视觉模块。 OV7670摄像头驱动在STM32F103C8T6上的实现,涉及了以下几个关键知识点: 1. **GPIO配置**:OV7670与STM32之间的通信涉及到多个GPIO引脚,包括数据线、时钟线、控制信号线等。需要根据OV7670的数据手册正确配置这些GPIO的工作模式,例如推挽输出、开漏输出、输入捕获等。 2. **SPI接口**:OV7670通常通过SPI(Serial Peripheral Interface)总线与MCU通信。STM32F103C8T6内置了SPI接口,需要设置相应的SPI时钟频率、极性、相位以及NSS(Slave Select)信号。 3. **时序控制**:OV7670的数据传输需要严格的时序配合,包括D/Cx引脚的选择(数据或命令)、读写操作、时钟同步等。这部分通常需要在代码中精确控制。 4. **寄存器配置**:在开始图像采集之前,需要通过SPI接口向OV7670的寄存器写入配置参数,如图像尺寸、格式、增益、曝光时间等,以满足不同的应用需求。 5. **图像数据处理**:OV7670输出的是RAW格式的像素数据,可能需要在STM32内部进行格式转换、色彩空间转换(如RGB到YUV)等处理,以便于后续显示或存储。 6. **串口传输**:描述中提到使用串口进行图像数据传输,这可能涉及到UART(Universal Asynchronous Receiver/Transmitter)接口。STM32F103C8T6有多达三个UART接口,需要配置合适的波特率、数据位、停止位和校验方式。 7. **串口调试工具**:"山外多功能助手"是一种常见的串口调试工具,它可以帮助开发者查看通过串口发送和接收的数据,便于调试程序。 8. **图像显示**:如果通过串口将图像数据传输至另一设备(如PC),接收端也需要相应的解析算法将接收到的数据还原为图像。 9. **焦距调整**:图像模糊可能是由于摄像头焦距不合适导致的,可以通过物理方式调整摄像头的光学焦距,或者在某些支持电子调焦的OV7670上通过软件调整。 实现STM32F103C8T6驱动无FIFO的OV7670摄像头涉及硬件接口设计、软件编程、通信协议等多个方面,需要对嵌入式系统有深入理解。提供的OV7670_Driver_STM32F103C8T6文件可能包含完成上述功能的驱动代码,可以作为学习和开发的参考。
1
硬件平台:STM32F4系列 程序设计:基于STM32HAL库,UART DMA方式接收与发送,串口数据缓存使用lwrb(FIFO),接收与发送的数据实现零拷贝,为了单片机使用效率,可以参考。 测试验证:上位机向两个串口进行1ms定时发送1024字节,百万数据量收发正常
2024-10-07 11:43:23 31.24MB stm32 UARTDMA FIFO UART
1