Corel-1k数据集共1000张图像,10类。
2026-01-16 11:17:34 28.48MB 数据集 图像识别 图像分类
1
**MNIST数据集** MNIST(Modified National Institute of Standards and Technology)是一个广泛使用的手写数字识别数据集,由LeCun、Yann等人在1998年提出。它包含了60,000个训练样本和10,000个测试样本,每个样本都是28x28像素的灰度图像,代表0到9的手写数字。MNIST是机器学习和深度学习领域入门的经典数据集,用于验证和比较不同图像识别算法的性能。 **多层感知器(MLP)** 多层感知器(Multilayer Perceptron)是一种前馈神经网络,通常包含一个输入层、一个或多个隐藏层和一个输出层。每个层都由若干个神经元组成,神经元之间通过权重连接。在MLP中,信息从输入层单向传递到输出层,不形成环路。通过反向传播算法和梯度下降法,MLP可以学习非线性模型,从而处理复杂的分类任务。 **Jupyter Notebook** Jupyter Notebook是一款交互式计算环境,支持Python、R、Julia等多种编程语言。它以笔记本的形式组织代码、文本、图表和数学公式,使得数据分析、实验和教学过程更加直观。用户可以通过Markdown语法编写文档,同时可以直接在单元格内运行代码,查看输出结果,非常适合数据探索和模型开发。 **MNIST_MLP-main项目结构** 在"MNIST_MLP-main"这个项目中,我们可以预期包含以下部分: 1. **数据加载**:使用Python的`tensorflow`或`keras`库加载MNIST数据集,预处理包括归一化、数据增强等。 2. **模型构建**:定义多层感知器的架构,可能包括输入层、隐藏层(可能有多个)和输出层。每个隐藏层可能使用ReLU、sigmoid或tanh作为激活函数,输出层则通常使用softmax用于多分类。 3. **编译模型**:设置损失函数(如交叉熵)、优化器(如Adam、SGD等)和评估指标(如准确率)。 4. **训练模型**:使用训练数据集进行模型训练,通过迭代优化权重和偏置。 5. **验证与评估**:在验证集上检查模型性能,避免过拟合。 6. **测试模型**:在测试集上评估模型的泛化能力。 7. **可视化**:可能包含训练过程中的损失和准确率曲线,以及一些样例预测结果的展示。 8. **代码注释**:良好的代码注释可以帮助理解每一步的目的和实现方法。 通过分析这个项目,你可以了解到如何使用MLP在实际问题中进行图像分类,并掌握利用Jupyter Notebook进行实验的过程。这将有助于你理解和实践深度学习的基本概念,同时提供了一个实际操作的平台。
2026-01-03 18:22:25 24KB JupyterNotebook
1
图像融合 M3FD 数据集 论文:Dual Adversarial Learning and a Multi-scenario Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection 下载链接:https://github.com/JinyuanLiu-CV/TarDAL 数据集:该数据集仅包含整个数据集中的M3FD_Fusion文件 为方便网络不好的同学,现将此数据集进行上传。
2025-09-24 10:41:17 410.28MB 人工智能 数据集 图像融合
1
创建该数据集的目的是促进卷积神经网络和计算机视觉的研究。 由于当前与冠状病毒大流行相关的背景,人类必须适应新的现实。口罩的使用在世界各国已成为普遍现象。 内容 该数据集有 3829 张图像,分为两个不同的类别: - 带有口罩 - 不带有口罩 该数据集的目的是促进图像分类模型的实现。 在当前全球抗击冠状病毒大流行的背景下,口罩已成为人们日常生活中的必备品。为了适应这一新的现实,推动计算机视觉和卷积神经网络技术的发展,特别创建了一个关于口罩检测的数据集。该数据集包含3829张图像,这些图像被明确划分为两类:一类是人们佩戴口罩的情况,另一类则是人们未佩戴口罩的情况。 数据集的构建是计算机视觉研究中的一项基础工作,它为图像分类模型的训练提供了必要的素材。在当前的公共卫生背景下,这个特定的数据集不仅有助于检测人群中的口罩佩戴情况,而且还能服务于智能监控系统,提高公共安全水平。 对于卷积神经网络(CNN)的研究人员来说,这样的数据集是一个宝贵的资源。CNN是一种深度学习算法,特别适用于图像处理领域,它能够从图像中识别出复杂的模式。在本数据集中,CNN可以被训练来区分和识别出佩戴口罩和未佩戴口罩两种不同的状态。通过这种训练,模型能够学会如何识别不同的面部特征,并且能够在现实世界的应用中快速准确地做出判断。 图像识别技术的进步,尤其是在面部识别领域的应用,已经在多个领域显示出其潜力,例如在安全检查、个性化推荐系统、增强现实等场合。本次创建的数据集在推动口罩检测研究的同时,也将对这些领域的技术进步产生积极影响。 此外,这个数据集还可能被用于监测特定环境中的口罩佩戴规则的遵守情况,如在公共交通工具、商场、学校等公共场所,相关软件可以通过分析监控摄像头实时捕获的画面,快速准确地识别出哪些人遵守了佩戴口罩的规定,哪些人没有,从而帮助管理人员更好地执行公共卫生规定。 为了进一步提高图像识别技术的准确性和实用性,研究人员会利用各种技术手段对数据集中的图像进行增强和预处理。例如,通过旋转、缩放、裁剪等手段扩充数据集的多样性;采用图像增强技术改善图像质量,降低环境因素对识别结果的干扰;采用数据标注技术明确图像中的关键信息,如人的面部位置等。所有这些努力都是为了提高模型的泛化能力和识别准确性。 这个关于口罩检测的数据集不仅对当前的疫情监测具有现实意义,而且在推动计算机视觉技术发展方面也具有重要的研究价值。通过对这个数据集的深入研究,可以期待未来出现更加智能和高效的图像识别系统,为社会带来更多的便利和安全保障。
2025-08-26 20:08:26 126.69MB 数据集 图像识别
1
想用深度学习的方法做一个轨道表面缺陷检测的项目,无奈找不到数据集,各大铁路轻轨运行的公司也不对外开放轨道缺陷图像,网上的数据集要不是那种损坏特别严重的图像(严重到根本无法在使用的),要不都是根据几十张图像进行数据增强凑数的,训练效果也不太好。我一气之下花了几个月的时间在各大开放数据集中找了600张高清的轨道表面缺陷图像,都是高质量的原图,但没有打标签,需要各位重新标注。由于600张一起上传太大,现在分为3批上传,每批200张,给大家开源,共同学习。数据收集不易,对大家有帮助的,请帮忙点个赞,打赏一下。谢谢。
2025-08-15 11:24:54 329.73MB
1
想用深度学习的方法做一个轨道表面缺陷检测的项目,无奈找不到数据集,各大铁路轻轨运行的公司也不对外开放轨道缺陷图像,网上的数据集要不是那种损坏特别严重的图像(严重到根本无法在使用的),要不都是根据几十张图像进行数据增强凑数的,训练效果也不太好。我一气之下花了几个月的时间在各大开放数据集中找了600张高清的轨道表面缺陷图像,都是高质量的原图,但没有打标签,需要各位重新标注。由于600张一起上传太大,现在分为3批上传,每批200张,给大家开源,共同学习。数据收集不易,对大家有帮助的,请帮忙点个赞,打赏一下。谢谢。
2025-08-15 11:24:27 234.44MB
1
想用深度学习的方法做一个轨道表面缺陷检测的项目,无奈找不到数据集,各大铁路轻轨运行的公司也不对外开放轨道缺陷图像,网上的数据集要不是那种损坏特别严重的图像(严重到根本无法在使用的),要不都是根据几十张图像进行数据增强凑数的,训练效果也不太好。我一气之下花了几个月的时间在各大开放数据集中找了600张高清的轨道表面缺陷图像,都是高质量的原图,但没有打标签,需要各位重新标注。由于600张一起上传太大,现在分为3批上传,每批200张,给大家开源,共同学习。数据收集不易,对大家有帮助的,请帮忙点个赞,打赏一下。谢谢。
2025-08-15 11:23:46 318.14MB
1
该资源包包含用于基于HSV颜色的保险丝分类的完整Halcon例程代码和示例图像文件,代码实现了保险丝分类的具体功能,图像文件可用于代码的调试和测试。用户可以直接加载提供的资源运行代码,通过HSV颜色空间分析实现保险丝的分类功能,验证算法效果,快速掌握HSV颜色分类的实现原理与应用方法。资源完整,包含代码与图像,可直接运行,无需额外配置,非常适合学习与开发相关应用。 在当今工业自动化领域中,对零部件的快速准确分类是提高生产效率的关键环节。保险丝作为电路中的基础元件,其分类工作尤为重要。本文所述的资源包即为此类应用提供了解决方案,利用HSV颜色空间作为分类依据,采用Halcon这一机器视觉软件进行编程实现。 HSV颜色空间是基于人眼对颜色的感知方式而定义的颜色模型,其中H代表色调(Hue),S代表饱和度(Saturation),V代表亮度(Value)。与常见的RGB颜色空间相比,HSV更贴近人类对颜色的直观感受,因此在色彩相关的图像处理中应用更为广泛。 Halcon作为一套专业的机器视觉开发软件,拥有强大的图像处理功能和算法库,适用于复杂的图像分析任务。在这个资源包中,Halcon例程代码通过调用其内置的图像处理函数,将保险丝图像从RGB颜色空间转换到HSV空间,并利用HSV颜色特征实现保险丝的自动分类。 资源包提供的例程代码名为"color_fuses.hdev",是一份可以被Halcon软件直接打开和运行的脚本文件。该代码文件中包含了图像的读取、预处理、颜色空间转换、颜色区域分割、形态学操作、特征提取以及分类决策等关键步骤。开发者可以通过运行此代码,直观地观察到算法对不同颜色保险丝的分类效果,从而进行调试和参数优化。 此外,资源包还包括"技术资源分享.txt"文档,其中详细记录了例程代码的使用方法、代码段的解释以及可能遇到的问题和解决方案。这对于初学者而言,是一份宝贵的学习资料,能够帮助他们快速理解并掌握Halcon在保险丝分类中的应用。 "color"作为另一个文件列表中的条目,可能指的是资源包中包含的示例图像文件。这些图像文件可能包含了不同色调、饱和度和亮度的保险丝图像,用于验证代码的分类准确性。开发者可以使用这些图像对算法进行测试,确保算法能够在实际应用中准确识别和分类不同颜色的保险丝。 该资源包不仅提供了一套完整的Halcon分类例程代码,还包括示例图像和详细的技术文档,是学习和应用HSV颜色分类原理的宝贵资料。对于从事机器视觉、图像处理以及自动化检测的工程师或研究人员而言,这是一个难得的学习工具,能够有效地提升他们的工作效率和项目质量。
2025-06-04 20:20:41 980KB Halcon 图像数据集 图像处理
1
《PyTorch深度学习实践:CIFAR数据集与CNN图像分类》 PyTorch作为一款灵活且强大的深度学习框架,被广泛应用于各种机器学习任务,尤其是计算机视觉领域中的图像分类问题。本教程将通过一个官方提供的PyTorch Demo,探讨如何使用PyTorch进行深度学习模型的构建、训练以及结果的可视化,主要涉及的知识点包括CIFAR数据集、卷积神经网络(CNN)以及训练过程中的损失函数和准确率曲线绘制。 CIFAR数据集是一个常用的小型图像分类数据集,包含10个类别,每个类别有6000张32x32像素的彩色图像,其中5000张用于训练,1000张用于测试。CIFAR-10是该数据集的一部分,每个类别有6000张图像。这个数据集的多样性和复杂性使得它成为验证和比较不同深度学习模型性能的理想选择。 在PyTorch中,我们可以使用`torchvision.datasets.CIFAR10`来加载和预处理CIFAR数据集。数据加载器(`DataLoader`)则负责批量地读取和预处理这些图像,以便于模型的训练。 卷积神经网络(CNN)是处理图像任务的首选模型,它通过卷积层提取特征,池化层降低维度,全连接层进行分类。在PyTorch中,我们可以通过`nn.Conv2d`创建卷积层,`nn.MaxPool2d`定义最大池化层,以及`nn.Linear`构建全连接层。模型的训练通常包含前向传播、损失计算(如交叉熵损失`nn.CrossEntropyLoss`)、反向传播和权重更新。 在PyTorch中,我们可以使用`torch.optim`模块的优化器(如`SGD`或`Adam`)进行梯度下降。同时,我们还需要记录并绘制训练过程中损失(loss)和预测精度的变化,这可以通过`torch.utils.tensorboard`或自定义Python脚本来实现。在每次迭代后,我们将训练损失和验证损失,以及训练准确率和验证准确率保存到日志文件,然后使用matplotlib等绘图库生成曲线图,以便观察模型的训练效果。 在PyTorch Demo中,你将看到如何定义模型结构,如何初始化权重,如何进行训练和验证,以及如何在训练过程中保存最佳模型。此外,Demo可能还包含如何加载模型进行预测,以及如何评估模型在测试集上的性能。 PyTorch Demo通过CIFAR-10数据集和CNN模型展示了深度学习的基本流程,提供了理解和实践深度学习模型的宝贵机会。通过学习这个Demo,你可以深入理解PyTorch的灵活性和实用性,并为进一步的深度学习研究打下坚实的基础。
2025-05-12 17:12:48 302.96MB pytorch CIFAR数据集 图像分类
1
单视图深度预测是计算机视觉中的一个基本问题。最近,深度学习方法取得了重大进展,但此类方法受到可用训练数据的限制。当前基于 3D 传感器的数据集具有关键局限性,包括仅限室内图像 (NYU)、少量训练示例 (Make3D) 和稀疏采样 (KITTI)。我们建议使用多视图互联网照片集(几乎无限的数据源)通过现代运动结构和多视图立体(MVS)方法生成训练数据,并基于此想法提出一个名为 MegaDepth 的大型深度数据集。从 MVS 导出的数据也有其自身的挑战,包括噪声和不可重构的对象。我们通过新的数据清理方法来解决这些挑战,并通过使用语义分割生成的序数深度关系自动增强我们的数据。我们通过证明在 MegaDepth 上训练的模型表现出很强的泛化能力来验证大量互联网数据的使用——不仅对新颖的场景,而且对其他不同的数据集(包括 Make3D、KITTI 和 DIW),即使这些数据集中没有图像训练时可见 在深度学习与计算机视觉领域,单视图深度预测一直是一个热点研究问题。其核心目标是通过分析单一视角的图像来估算场景中各物体的深度信息。然而,深度预测模型的性能高度依赖于训练数据的质量与多样性。传统上,这类数据集大多来源于3D传感器,例如NYU Depth数据集和Make3D数据集,或者是通过车辆搭载的传感器采集的数据,如KITTI数据集。这些数据集的局限性在于数量有限、场景受限、或是数据稀疏。 随着互联网的普及,多视图互联网照片成为了一个几乎无限的数据源。MegaDepth数据集的提出,正是为了解决现有数据集的局限性,并利用这些照片进行深度学习模型的训练。MegaDepth是通过结合现代运动结构(Structure from Motion, SfM)和多视图立体(Multi-View Stereo, MVS)方法从互联网照片中生成的大型深度数据集。 生成MegaDepth数据集的过程中,面临着数据中的噪声以及无法进行三维重建(reconstruct)的对象等挑战。为了克服这些问题,研究人员设计了新的数据清理方法,以提高数据的质量和可用性。此外,研究团队还运用了语义分割技术来自动增强数据集,通过生成序数深度关系来辅助深度学习模型训练。 MegaDepth数据集的发布和应用证明了利用大量互联网数据进行深度学习模型训练的可行性。这些模型不仅对于新颖的场景具有很强的泛化能力,而且在面对其他不同的数据集时,也展现出了良好的适应性和准确性。例如,在Make3D、KITTI和DIW等数据集上,尽管模型训练时未使用这些数据集中的图像,模型依然能够进行有效的深度预测。 下载MegaDepth数据集可以通过提供的百度网盘链接进行。该数据集的使用,对于研究者来说,不仅能够获取到大量的训练样本,而且能够体验到在多样化场景下训练深度学习模型所带来的优势。这对于推动计算机视觉技术在实际应用中的发展具有重要意义。 该数据集的提出,为计算机视觉领域提供了新的研究方向和工具,特别是在提升单视图深度预测模型的泛化能力方面。同时,它也展示了如何有效地利用互联网上的资源,将看似无序的海量数据转变为高质量的训练资源,这一过程对数据科学、机器学习乃至人工智能的发展都有着深远的意义。通过这一数据集的应用,研究者可以更好地研究和解决现实世界中复杂场景的深度预测问题,为增强现实、机器人导航、自动驾驶等领域提供技术支撑。
2024-12-09 18:29:19 130B 数据集 图像匹配
1