本文详细介绍了基于YOLOv11模型的无人机检测系统的整个项目流程,其中包括项目的特点介绍如YOLOv11模型的优点、数据增广方法、评估性能标准(精确度、召回率以及F1分数),此外还涵盖了友好的UI设计、阈值调节、类统计功能等等。文中通过多个模块,分别对各部分进行深入剖析,展示了数据的读取和增强,模型的加载预测方式,评估性能的方法及其可视化表示等重要环节的内容和具体的编码指导,最后实现了整套的系统开发方案。 适合人群:有一定经验的对象识别、AI、深度学习从业者以及对于使用Python实现特定对象的快速精准识别感兴趣的软件工程师。 适用场景及目标群体包括希望利用超快速目标探测器提升监控能力的应用场景或是想探索YOLO系列不同版本特性的人。 注意:尽管文档已尽力涵盖各种要素和细节,但仍可能存在需要自行补充调整的地方;并推荐在真实世界中应用前对所用开源数据库的质量和多样性进行审查;而且要考虑到软件的部署和测试要在合适的硬件设备和操作系统上执行,保证最终系统的可靠性。
2026-02-05 13:18:51 48KB 数据增强
1
本文详细介绍了在YoloV8训练过程中,针对数据集量少的情况,通过多种数据增强技术扩增数据集的有效方法。主要包括旋转、平移、缩放等仿射变换,以及添加噪声、模糊和抖动等图像处理技术。文章提供了完整的代码实现,包括图像和标注框的同步变换处理,确保增强后的数据仍保持正确的标签信息。特别针对OBB(Oriented Bounding Box)格式的数据集,详细说明了如何应用这些增强技术并处理变换后的坐标归一化问题。通过随机参数组合,每张原始图像可生成多个增强样本,显著提升模型训练效果。 在YoloV8训练过程中,面对数据集数量有限的问题,采用了一系列高效的数据增强技术,这些技术的运用极大地扩展了原始数据集的规模和多样性。数据增强技术主要包括了图像的旋转、平移、缩放等仿射变换,这些变换能够模拟物体在不同角度、位置以及大小时的视觉效果,从而增加模型对这些变化的鲁棒性。此外,为了模拟更接近现实世界图像的噪声、模糊和抖动等现象,也使用了图像处理技术进行增强。这些技术不仅丰富了图像的视觉效果,还提高了模型的泛化能力。 文章中提供了实现这些数据增强方法的完整代码,这些代码确保在增强图像的同时,相应地调整标注框的位置和大小,保持标注框与图像内容的一致性,这对于保证后续模型训练的准确性至关重要。特别是当数据集以OBB(Oriented Bounding Box)格式存储时,文章进一步阐明了如何处理增强后坐标归一化的问题,使得算法在面对有方向的边界框时也能准确地识别和定位对象。 通过随机参数的组合,一张原始图像可以生成多个不同样式的增强样本,这样的操作不仅大幅提升了模型训练的数据多样性,也有效地提升了模型的学习效率和识别准确性。这些数据增强技术的应用,使得即使在数据集较小的情况下,也能够训练出性能优越的视觉识别模型。 此外,文章还强调了在处理图像数据时,保持标注信息的准确性与一致性是至关重要的。在增强的图像上必须同步更新标注信息,这样才能确保模型在学习过程中能够准确地从数据中学习到正确的知识。整个数据增强过程不仅仅是在增加图像的数量,更是在提升图像质量和增加数据变化的多样性,这对于训练一个强大和鲁棒的深度学习模型来说是必不可少的。 文章最后提到了随机参数组合的重要性。在使用数据增强技术时,随机性是提高模型泛化能力的关键因素。不同的参数组合可以创造出变化多端的图像样本,这样一来,模型在学习过程中就能遇到更多样的情况,从而在真实世界的应用中能够更好地泛化。通过这种方法,即使在数据集较小时,也能够训练出一个性能强大且具备广泛应用能力的模型。
2026-01-15 19:40:05 749KB 软件开发 源码
1
dog rope person qs_yes qs_no 其中标签分以上五类,狗,绳子,人,牵绳,不牵绳。
2026-01-07 13:33:29 220.94MB 人工智能 yoloV5 目标检测
1
想用深度学习的方法做一个轨道表面缺陷检测的项目,无奈找不到数据集,各大铁路轻轨运行的公司也不对外开放轨道缺陷图像,网上的数据集要不是那种损坏特别严重的图像(严重到根本无法在使用的),要不都是根据几十张图像进行数据增强凑数的,训练效果也不太好。我一气之下花了几个月的时间在各大开放数据集中找了600张高清的轨道表面缺陷图像,都是高质量的原图,但没有打标签,需要各位重新标注。由于600张一起上传太大,现在分为3批上传,每批200张,给大家开源,共同学习。数据收集不易,对大家有帮助的,请帮忙点个赞,打赏一下。谢谢。
2025-08-15 11:24:54 329.73MB
1
想用深度学习的方法做一个轨道表面缺陷检测的项目,无奈找不到数据集,各大铁路轻轨运行的公司也不对外开放轨道缺陷图像,网上的数据集要不是那种损坏特别严重的图像(严重到根本无法在使用的),要不都是根据几十张图像进行数据增强凑数的,训练效果也不太好。我一气之下花了几个月的时间在各大开放数据集中找了600张高清的轨道表面缺陷图像,都是高质量的原图,但没有打标签,需要各位重新标注。由于600张一起上传太大,现在分为3批上传,每批200张,给大家开源,共同学习。数据收集不易,对大家有帮助的,请帮忙点个赞,打赏一下。谢谢。
2025-08-15 11:24:27 234.44MB
1
想用深度学习的方法做一个轨道表面缺陷检测的项目,无奈找不到数据集,各大铁路轻轨运行的公司也不对外开放轨道缺陷图像,网上的数据集要不是那种损坏特别严重的图像(严重到根本无法在使用的),要不都是根据几十张图像进行数据增强凑数的,训练效果也不太好。我一气之下花了几个月的时间在各大开放数据集中找了600张高清的轨道表面缺陷图像,都是高质量的原图,但没有打标签,需要各位重新标注。由于600张一起上传太大,现在分为3批上传,每批200张,给大家开源,共同学习。数据收集不易,对大家有帮助的,请帮忙点个赞,打赏一下。谢谢。
2025-08-15 11:23:46 318.14MB
1
调研了一下数据扩增的方法,无外乎是旋转、镜像、噪声、剪切等。 以上方式只能在原有的图像上进行简单的处理,目前这个方法参考语义分割中的copy_paste方法,将其适用于目标检测VOC数据集格式。 功能: 1、随机提取目标框。 2、单个或者多个目标框随机与其他图像进行结合生成新的图像数据 3、限制目标的位置,避免与结合图的目标框重叠(可自行进行删改) 4、增加数据的倍数设置,例如,你有10张图,倍数设置为10,那么在新的文件夹里重新生产100张图片,里面的位置随机。 5、可以看一下我的其他资源,有个普通扩增,两者可以结合,生成自己需要的数据。 注意:此资源仅限于个人学习适用!!!!!!
2025-06-27 20:55:57 5KB 目标检测 数据增强
1
内容概要:本文是YOLOv8数据集构建与训练的VIP专享指南,详细介绍了从数据采集到模型部署的全流程。首先提供了官方数据集标准模板,涵盖COCO和YOLO格式,并附带了标注工具VIP加速包推荐。接着阐述了自定义数据集构建流程,包括硬件要求、数据清洗技巧(如模糊图像过滤)、高级标注策略(如困难样本挖掘)。然后深入探讨了数据增强方法,从基础增强组合到针对特殊场景的增强方案,如夜间检测、小目标密集场景等。训练优化部分则给出了数据集划分比例、超参数调优模板以及多GPU训练指令。最后分享了数据集质量诊断与优化方法,以及两个高级实战案例(无人机巡检和工业缺陷检测),并提供了一份模型部署前的数据校验清单。 适合人群:面向有一定深度学习基础,特别是从事计算机视觉领域的研究人员和工程师。 使用场景及目标:①帮助用户掌握YOLOv8数据集构建的完整流程;②通过实例教学提升数据集质量和模型性能;③为实际项目中的YOLOv8应用提供参考和指导。 阅读建议:由于本文涉及大量技术细节和实践操作,建议读者结合具体案例进行学习,并动手实践文中提到的各种工具和技术,以便更好地理解和应用YOLOv8的相关知识。
2025-06-02 22:41:16 26KB 数据增强 COCO格式 自定义数据集
1
1、资源内容:yolo数据增强、yolo已标注数据集增强、.txt格式数据集增强;包含旋转、平移、翻转、裁剪、调整亮度和增加噪声6中增强方式随 2、代码特点:内含运行结果,不会运行可私信,参数化编程、参数可方便更改、代码编程思路清晰、注释明细,都经过测试运行成功,功能ok的情况下才上传的。 3、适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。 4、作者介绍:某大厂资深算法工程师,从事Matlab、Python、C/C++、Java、YOLO算法仿真工作10年;擅长计算机视觉、 目标检测模型、智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、智能控制、路径规划、无人机等多种领域的算法仿真实验,更多源码,请上博主主页搜索。 -------------------------------------------------------------------------- -
2024-04-21 02:55:29 11KB 数据集
这个资源包含一个为Yolo目标检测模型特别设计的数据增强Python脚本。脚本采用多种数据增强技术,包括图像缩放(保持比例和下降比例)、随机水平和垂直翻转、中心裁剪,以及图像属性(亮度、对比度、饱和度)调整。此外,它还提供了高斯噪声、盐噪声和椒噪声的添加功能,使模型能够更好地处理现实世界中的图像。这些数据增强技术能够显著提高目标检测模型在多样化环境下的准确性和鲁棒性。 这个脚本非常适合机器学习和计算机视觉研究者,尤其是那些使用Yolo进行目标检测的开发者。通过本脚本,用户可以轻松地对他们的数据集进行增强处理,从而提高模型的泛化能力和性能。无论您是深度学习的新手还是经验丰富的研究者,这个资源都是您的理想选择。
2024-04-18 20:19:13 13KB python 目标检测 特征增强
1