内容概要:介绍了五个基于R语言的数据分析实例:全国2000-2019年人口数据分析、一整套R语言数据分析与建模流程、使用ggplot2进行数据可视化的各种方式、R语言数据分析从入门到实践的内容,以及两种具体的回归分析案例(针对体脂数据和公共交通使用量对全球变暖的影响)。通过实际操作帮助理解R语言的各种应用。 适用人群:对于不同水平的学习者或R语言使用者都具有参考价值,尤其是初学者或是想要深化了解R语言高级用途的研究者。 使用场景及目标:涵盖利用R语言开展数据清洗、探索性分析、图表制作、统计推断及建模等多种活动。 阅读建议:本资料既可供初次接触R语言的新手学习基本的操作流程和技术,也为熟练掌握基本操作后希望通过实战项目深入理解和提高自己专业技能的专业人士提供了一个良好的进阶平台。
2024-12-24 18:29:39 12KB R语言 数据分析 数据可视化 ggplot2
1
1.校园信息原始数据集 1.学生基本信息 字段说明 学号 性别 年龄 姓名 专业 取这几个值: 文学与人文、社会科学、自然科学、工程与技术、医学与健康 艺术与设计、教育、法律、商科与管理、农学与环境科学 籍贯 2.学生成绩信息 字段说明 学号 姓名 学年 大一、大二、大三、大四 绩点 取值范围0-4,小数 评级 (0-2.2)差,(2.2-2.7)中等,(2.7-3.2)良,(3.2-4.0)优 3.学生消费记录 字段说明 学号 姓名 消费超市名 取: 校园购吧、校园便利坊、学子优选、校园易购、校园好物、学生便利汇 6个超市名 消费金额 取值范围:0-100之间 消费日期
2024-12-01 00:24:25 2.45MB 数据分析 数据集
1
在Python编程语言中,数据分析是一项核心技能,广泛应用于科研、商业智能、数据挖掘等领域。本话题将深入探讨Python在数据分析中的应用,通过一系列的练习题来帮助你提升这方面的技能。 我们要理解Python的数据分析基础,这包括对数据结构如列表、元组、字典和集合的理解,以及如何使用NumPy库处理多维数组。NumPy提供了高效的数值计算功能,是进行科学计算的基础工具。例如,你可以使用numpy.array()创建数组,并利用函数如numpy.mean()、numpy.std()计算平均值和标准差。 Pandas库是Python数据分析的核心库,它的DataFrame对象能够方便地组织和处理表格型数据。学习如何创建、读取和操作DataFrame(如使用head()、tail()查看数据,用loc[]和iloc[]进行索引,以及merge()、join()合并数据)是数据分析的基础。同时,Pandas提供了数据清洗功能,如处理缺失值(fillna()、dropna()),数据类型转换(astype())等。 接下来,我们关注数据预处理,这是数据分析的关键步骤。这包括数据清洗(去除异常值、重复值)、特征工程(创建新变量、编码分类变量)以及标准化或归一化(如使用scikit-learn的StandardScaler或MinMaxScaler)。在Python中,这些通常与Pandas和scikit-learn库结合使用。 进入统计分析阶段,你需要掌握描述性统计(如中心趋势度量、离散程度度量)和推断性统计(如假设检验、置信区间)。Python的SciPy库提供了丰富的统计函数,而matplotlib和seaborn库则用于数据可视化,帮助我们更好地理解数据分布和关系。 数据挖掘是数据分析的高级阶段,涉及分类、回归、聚类等机器学习任务。Python的scikit-learn库提供了各种算法,如线性回归(LinearRegression)、逻辑回归(LogisticRegression)、决策树(DecisionTreeClassifier/Regressor)、随机森林(RandomForest)、支持向量机(SVM)等。理解每个模型的工作原理,如何训练模型,以及评估模型性能(如使用R^2分数、准确率、AUC-ROC曲线)是至关重要的。 在“数据分析第一次作业”中,你可能会遇到以上提到的各种任务。可能需要你导入数据、清洗数据、进行描述性统计分析、构建预测模型,最后可视化结果并解释发现。这将锻炼你的实际操作能力和问题解决能力,为更复杂的数据分析项目打下坚实基础。 Python数据分析是一个涵盖了数据处理、统计分析和机器学习的综合性领域。通过不断的练习和实际项目,你将逐渐熟悉这个领域的工具和技术,成为数据驱动决策的专家。在这个过程中,理解数据、选择合适的方法和模型、以及清晰地展示分析结果是关键。祝你在Python数据分析的道路上越走越远!
2024-11-25 03:29:22 2.64MB python 数据分析 数据挖掘
1
这是一个适合进行数据分析练习的基础数据集,由tableau官方提供,有兴趣的朋友们可以下载进行练习。
2024-11-25 03:19:33 3.04MB 数据分析 数据集
1
在本文中,作者探讨了如何利用MATLAB和Pro/Engineer (Pro/E) 两款软件在钢丝绳建模中的应用,为矿井提升中的重要部件钢丝绳提供了一种新的建模技术。钢丝绳由于其特定的空间结构和应用领域的重要性,需要精确的建模以便于结构分析。本文的技术路线是在MATLAB中编写源程序,处理数学方程生成钢丝绳的轨迹数据,然后将这些数据导出为Pro/E能够识别的格式,从而完成钢丝绳的建模。 我们需要了解Pro/E软件的特性。Pro/E是一款广泛应用于三维设计的软件,拥有丰富的库和精准的计算功能,能够完整地表达产品外形、装配及其功能。它支持多个部门协作在同一产品模型上进行工作,但在复杂的三维设计,尤其是在生成严格数学描述的复杂曲线时,Pro/E的能力会受到一定的限制。这是因为Pro/E对于生成曲线方程的函数支持有限,导致其在设计复杂度上有所不足。 MATLAB,作为一款功能强大的数学软件,提供上百个预定义命令和函数,以及强大的二维和三维图形工具。它还有25个不同工具箱适用于特殊应用领域,使得MATLAB成为应用广泛的工具之一。特别是,MATLAB强大的函数库和数据处理能力,可以处理复杂的曲线方程,并将结果导出。 文中以IWRC1X19型钢丝绳为例,详细介绍了钢丝绳的结构特征,包括断面形状、捻法、股数、钢丝数、以及绳股和钢丝的排列方式。IWRC1X19钢丝绳由中心钢丝和两层分别为6根和12根绕中心钢丝作同心捻转的侧线钢丝构成,其中钢丝直径均为2mm,螺旋升角为76.5度,螺距为52.3mm。钢丝绳的各部名称被详细阐释,包括绳芯、绳股、股芯线、股芯线螺旋半径和侧线钢丝等。 接下来,文章通过MATLAB程序来生成钢丝绳中心钢丝和侧线钢丝的曲线方程。根据公式,作者编写了MATLAB代码,将钢丝绳各部分的数学模型数据转换成Pro/E可识别的ibl格式文件。作者在MATLAB中编写了两个关键部分的代码,即中心钢丝和侧线钢丝的代码。这些代码将生成必要的曲线数据,并将数据保存为ibl文件,以便在Pro/E中使用。 在MATLAB程序中,作者首先定义了中心钢丝曲线方程和侧线钢丝曲线方程。中心钢丝曲线方程描述了钢丝绳中心钢丝的形状,而侧线钢丝曲线方程则涉及到螺旋线的性质,其中螺旋线螺距为参数之一。通过编写MATLAB代码,可以生成大量点的数据矩阵,并将这些数据保存为ibl文件。这些文件包含三维空间中的点坐标,用于在Pro/E中创建钢丝绳模型的轨迹曲线。 最终,这些曲线被用于生成Pro/E中的钢丝绳三维模型。在这个建模过程中,MATLAB和Pro/E互补,MATLAB负责数学计算和数据处理,而Pro/E则利用这些数据完成模型的可视化和进一步的设计分析工作。 通过本文的介绍,我们可以了解到MATLAB在数据处理和复杂数学计算中的强大能力,以及Pro/E在三维设计和模型可视化方面的专业性。将两者结合起来使用,在工程领域尤其是复杂结构建模方面,可以大大拓展设计能力的边界。此外,这种混合使用不同专业软件的方法,也为工程师提供了灵活应对各种设计挑战的新思路。
2024-08-30 20:03:37 898KB MATLAB 数据分析 数据处理 论文期刊
1
基于MATLAB的图形用户界面设计.pdf
2024-07-31 14:57:13 1.11MB MATLAB 数据分析 数据处理 论文期刊
1
现有csv格式的数据集,它的属性:date_time id shop_name title sku_name price sold discount brand parameter 分别对应: date_time:月份(例如:2020年11月) id:商品id shop_ name:店铺名称 title:商品标题 sku_name:sku标题 price:商商品单价(定价、原价) sold:商品销量 discount:商品折扣(空值表示未享受折扣) brand:商品品牌 paraneter商品考数(包含生产个业和商品品牌等信息) 1.对店铺进行分析,一共包含多少家店铺,各店铺的销售额占比如何?给出销售额占比最高的店铺,并分析该店铺的销售情况。 2.对所有药品进行分析,一共包含多少个药品,各药品的销售额占比如何?给出销售额占比最高的10个药品,并绘制这10个药品每月销售额曲线图。 3.对所有药品品牌进行分析,一共包含多少个品牌,各品牌的销售额占比如何?给出销售额占比最高的10个品牌,并分析这10个品牌销售较好的原因?
2024-07-28 16:36:36 4.87MB 数据分析 数据集 健康医疗
1
finebi6.0 服务器版 安装教程 https://blog.csdn.net/qq_24330181/article/details/140435340
2024-07-28 00:43:48 979.31MB finebi 数据分析 数据可视化
1
资源中包含了诸多关于商品零售信息的资源,可作为数据分析与可视化的数据
2024-06-28 09:40:10 6.55MB 数据集 python 数据分析 数据可视化
1
Pandas+python可视化技术对医疗数据进行数据与处理、数据分析、数据可视化
2024-06-22 17:58:40 82.96MB
1