北方苍鹰算法(NGO)优化最小二乘支持向量机回归预测,NGO-LSSVM回归预测,多变量输入模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2023-12-02 15:53:26 175KB 支持向量机
1
1. 对应视频链接:https://www.bilibili.com/video/BV1PB4y167et/?vd_source=cf212b6ac033705686666be12f69c448 2. Matlab实现支持向量机的数据回归预测(完整源码和数据) 3. 多变量输入,单变量输出,数据回归预测 4. 评价指标包括:R2、MAE、MSE、RMSE 5. 包括拟合效果图和散点图 6. Excel数据,暂无版本限制,推荐2018B及以上版本 7. 其他代码连接:https://docs.qq.com/sheet/DRXBpdVRydFRHTXlB?tab=BB08J2&_t=1667389129635&u=96322ede66974c7097f1238bbc559fdc 注:采用 Libsvm 工具箱(无需安装,可直接运行),仅支持 Windows 64位系统
2023-08-31 08:33:38 59KB matlab 支持向量机 回归 机器学习
1
遗传算法GA优化支持向量机回归算法SVR,python写,自带数据集
2023-04-15 14:42:33 32KB 支持向量机 回归 python 数据集
1
代码有详细注解,多输出单输出,Excel数据读取,适合初学者,先到先得!
2023-04-05 12:50:05 61KB 支持向量机 MATLAB 回归预测
1
粒子群算法PSO优化支持向量机回归算法SVR,python写,自带数据集
2023-03-28 10:26:09 32KB 算法 支持向量机 回归 python
1
其中关于PSO部分的书写,已经进行了封装,可以进行通用,用于其他模型的优化。该资源实例主要用于优化支持向量机回归算法中的惩罚参数C、损失函数epsilon、核系数gamma进行调参
1
基于支持向量机的数据回归预测(SVM) (Matlab完整程序和数据) 基于支持向量机的数据回归预测(SVM) (Matlab完整程序和数据) 基于支持向量机的数据回归预测(SVM) (Matlab完整程序和数据) 运行版本2018及以上
MATLAB实现SVM支持向量机多输入回归预测(完整源码和数据) 数据为多输入回归数据,输入7个特征,输出1个变量,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
2022-10-18 20:04:57 309KB 多输入回归 SVM 支持向量机 回归预测
提出在支持向量机回归预测中采用粒子群算法优化参数和主成分析降维的方法,通过算例分析表明,此法能够显著提高预测的精度。
2022-09-27 16:52:49 404KB 支持向量机
1
基于混合策略改进的优化算法+基于混合策略改进的优化算法在支持向量机回归(SVR)中的应用,混合策略为Sobol序列初始化、惯性权重及柯西步长三种改进策略的混合,并已锂离子电池容量数据为例,进行测试,亲测有效。
2022-06-06 13:05:20 3.03MB 群智能算法 支持向量机