本文研究了异步离散时间多智能体系统的约束共识问题,其中每个智能体在达成共识时都需要位于封闭的凸约束集内。 假定通信图是有向的,不平衡的,动态变化的。 另外,假定它们的并集图在有限长度的某些间隔之间是牢固连接的。 为了处理代理之间的异步通信,可以通过添加新的代理将原始异步系统等效地转换为同步系统。 通过利用凸集上的投影特性,可以估算从新构建的系统中的智能体状态到所有智能体约束集的交集的距离。 基于此估计,通过显示新构建系统的线性部分收敛并且非线性部分随时间消失,证明了原始系统已达成共识。 最后,提供了两个数值示例来说明理论结果的有效性。
2025-10-24 09:47:53 846KB Constrained consensus; Multi-agent system;
1
本书深入探讨了多智能体系统在通信网络上的协同控制问题,重点介绍了最优和自适应设计方法。书中阐述了如何通过分布式协议确保所有智能体达成共识或同步,涵盖了一阶和二阶系统、队形控制及图拓ology的影响。此外,书中还探讨了最优控制和自适应控制在图上的实现,强调了局部和全局最优性之间的关系及其在实际应用中的挑战。通过实例和理论分析,本书为读者提供了理解和解决多智能体系统协同控制问题的全面指南。 多智能体系统的协同控制与优化设计是近年来系统控制领域的热点问题。智能体系统是由多个智能体组成的一个群体,每个智能体拥有一定程度的自治能力,通过相互之间的协调与合作来完成复杂的任务。在这一领域中,协同控制主要是指智能体之间如何通过分布式协议达成一致的行为,即达成共识或同步。优化设计则涉及如何构建最优的控制策略,使得系统的整体性能达到最佳。 本书深入探讨了多智能体系统在通信网络上的协同控制问题,重点介绍了最优和自适应设计方法。所谓最优设计,即是在给定性能指标下,寻找可以使系统性能最优化的控制策略。而自适应设计则是指系统能够在变化的环境或参数下,自动调整自身控制策略,以适应外部变化。 书中详细阐述了分布式协议如何确保所有智能体达成共识或同步,并且覆盖了不同类型的系统模型,例如一阶系统和二阶系统。队形控制和图拓扑的影响也是讨论的关键内容,因为它们直接关系到智能体如何在空间中有效地组织和协同工作。 此外,最优控制和自适应控制在图上的实现也被细致探讨。这涉及到如何将最优控制和自适应控制理论应用到多智能体系统的网络结构上,以及这些控制策略如何在局部和全局水平上影响系统的最优性。这些理论与实际应用中的挑战紧密相连,书中通过实例和理论分析,为读者提供了理解和解决多智能体系统协同控制问题的全面指南。 本书的作者们包括弗兰克·L·刘易斯(Frank L. Lewis)、张红伟(Hongwei Zhang)、克里斯蒂安·亨格斯特-莫夫里克(Kristian Hengster-Movric)和阿比吉特·达斯(Abhijit Das)。他们分别来自德克萨斯大学阿灵顿分校UTA研究所和西南交通大学电气工程学院、以及Danfoss Power Solutions(US)公司。该书由Springer出版,是通讯与控制工程系列的一部分。 在版权方面,本书受到国际版权法律的保护。出版社保留了包括翻译权、翻印权、插图使用、朗诵权、广播权、微缩复制或任何其他物理方式复制、传输或信息存储和检索、电子改编、计算机软件,或通过现在已知或今后开发出的类似或不相似方法的权利。但是,为了评论、学术分析或专门为在计算机系统中执行和使用的材料,可以简短摘录。 本书对于希望深入了解多智能体系统协同控制和优化设计的读者来说,是极具价值的参考资料。它不仅涵盖了理论的全面讨论,也提供了实际应用的案例分析,能够帮助读者在工程实践与理论研究中找到平衡点。
2025-10-22 12:20:33 21.49MB multi-agent systems control theory
1
本书系统介绍多智能体系统的控制理论与Python仿真,涵盖一致性、覆盖与编队控制等核心内容,并延伸至分布式优化与病毒传播建模。适合控制、计算机与工程领域研究生及研究人员,兼具理论深度与实践代码,助力快速掌握协同控制前沿。 多智能体系统由多个自主个体组成,这些个体能够协作执行复杂任务,如搜索、监视、探索和导航等。在多智能体系统中,个体间需要通过通信、感知和决策来协同工作,这要求每个智能体具有一定的智能水平和通信能力。多智能体系统的控制理论研究如何设计和分析智能体间的交互机制,以及如何通过这些机制实现高效的任务执行。 一致性问题关注的是系统中所有智能体能否达成并保持某种共识状态。在多智能体系统中,一致性算法使得一组初始状态不同的智能体能够通过局部信息交换和一定策略,最终在状态上达成一致。一致性控制广泛应用于机器人编队控制、分布式计算、传感器网络和无人机群控制等领域。 覆盖与编队控制是多智能体系统中的另一个重要研究方向。覆盖控制主要研究智能体如何分布于某个区域内以执行覆盖任务,例如环境监测、搜索救援等。而编队控制则关注智能体如何协同移动以形成特定的形状或队形。这些控制策略在多机器人系统、卫星编队控制、无人航空器编队飞行等领域具有重要应用。 分布式优化处理的是如何在多智能体系统中分散地解决优化问题。该问题要求智能体能够在缺乏全局信息的情况下,通过相互交流和协作,达成全局最优解或近似最优解。分布式优化方法在电力系统、交通管理、无线网络等领域都有实际应用。 病毒传播建模是研究传染病在人口群体中传播的数学模型,通过多智能体系统模型可以模拟不同个体间的相互作用及其对病毒传播的影响。这类模型有助于公共卫生政策制定者理解和预测疾病爆发趋势,从而采取有效的防控措施。 Python作为一种编程语言,在多智能体系统的仿真研究中具有重要作用。它的易学易用、丰富的库支持以及强大的数据处理能力,使得研究人员能够快速搭建仿真平台并实现复杂的控制策略。Python在多智能体仿真中广泛应用于算法的快速原型开发、结果可视化以及数据分析等环节。 本书提供的内容不仅深入浅出地介绍了多智能体系统的控制理论,还通过Python仿真实践,帮助读者更好地理解理论知识并掌握其应用。书中包含大量理论分析和代码实例,通过这些内容,读者可以学习到如何使用Python进行多智能体系统的仿真,进而进行分布式优化和病毒传播建模等复杂任务。 本书适合控制、计算机与工程领域的研究生及研究人员阅读。该书不仅提供了多智能体系统的基础知识,还包括了利用Python进行模拟实验的方法。书中内容覆盖了从基础理论到实际应用的多个方面,使读者能够在理解多智能体系统控制的基础上,结合编程实践,深入研究和开发新的控制策略。 书中的章节设计和内容编排旨在帮助学生和教师更有效地利用教材。教材系列注重理论与应用的结合,不仅提供了理论知识,还包含了丰富的辅助教学材料。这些材料通过网络获取,覆盖了从仿真文件到课堂投影的pdf幻灯片、供教师下载的习题解答pdf等多种形式。教师可以通过这些资源来辅助教学和评估学生的学习进度。 本书是一本内容全面、理论与实践相结合的专业教材,旨在为控制和计算机工程领域的学生和研究者提供多智能体系统控制领域的最新研究成果和仿真应用工具。通过阅读本书,读者能够获得丰富的理论知识,并通过Python编程实践加深理解,最终实现协同控制前沿技术的快速掌握。
2025-10-22 12:11:34 13.5MB 多智能体 Python 分布式控制
1
多智能体协同控制技术,特别是无人车、无人机和无人船的编队控制与路径跟随。重点讲解了基于模型预测控制(MPC)的分布式编队协同控制方法及其在MATLAB和Simulink中的实现。文中还涉及路径规划的重要性和常用算法,如A*算法和Dijkstra算法。通过具体的MATLAB代码示例和Simulink建模,展示了如何实现高效的多智能体协同控制。 适合人群:对无人驾驶技术和多智能体系统感兴趣的科研人员、工程师及高校学生。 使用场景及目标:适用于研究和开发无人车、无人机、无人船的编队控制和路径规划项目,旨在提高多智能体系统的协同效率和性能。 其他说明:文章不仅提供了理论背景,还包括实用的代码示例和仿真工具介绍,有助于读者深入理解和实践相关技术。
2025-10-22 12:09:51 300KB
1
内容概要:本文探讨了无人潜航器(AUV)路径跟踪控制的关键技术——多目标模型预测控制方法。首先介绍了传统路径跟踪控制方法的局限性,即仅关注单一目标如最短路径,而在复杂的海洋环境中,无人潜航器需要同时满足多个目标,如避障、保持深度和节能等。因此,多目标模型预测控制方法能够综合考虑这些不同甚至相互冲突的目标,提前预测系统未来的行为,从而做出更优的控制决策。接着,文章展示了用Python实现这一控制方法的代码示例,包括计算当前位置与目标路径距离的基础函数distance_to_path,预测下一时刻位置的函数predict_next_position,以及核心的多目标模型预测控制函数multi_objective_mpc。最后,详细解释了各个函数的功能和参数设置,强调了权重矩阵Q和R在平衡不同目标方面的重要作用。 适合人群:对无人潜航器路径跟踪控制感兴趣的科研人员和技术开发者,尤其是那些希望深入了解多目标模型预测控制方法的人群。 使用场景及目标:适用于研究和开发无人潜航器路径规划和控制系统,旨在提高无人潜航器在复杂海洋环境中的导航精度和效率。 其他说明:文中提供的代码仅为概念验证性质,实际应用时需要进一步优化和调整,以应对更加复杂的海洋环境和更高的性能要求。
2025-10-18 16:23:31 2.02MB
1
内容概要:本文介绍了基于模型预测控制(MPC)的微电网调度优化方法,并提供了相应的Matlab代码实现。文中还涉及多种优化算法和技术在不同工程领域的应用,如改进引导滤波器、扩展卡尔曼滤波器、多目标向日葵优化算法(MOSFO)、蛇优化算法(MOSO)等,重点聚焦于微电网多目标优化调度问题。通过MPC方法对微电网中的能源进行动态预测与优化调度,提升系统运行效率与稳定性,同时应对分布式电源不确定性带来的挑战。配套代码便于读者复现与验证算法性能。; 适合人群:具备一定电力系统或自动化背景,熟悉Matlab编程,从事新能源、智能优化或微电网相关研究的科研人员及研究生;; 使用场景及目标:①实现微电网在多目标条件下的优化调度;②处理分布式电源不确定性对配电网的影响;③学习并应用MPC控制策略于实际能源系统调度中;④对比分析不同智能优化算法在路径规划、调度等问题中的表现; 阅读建议:建议结合提供的Matlab代码与网盘资料,按主题逐步实践,重点关注MPC在微电网中的建模过程与优化机制,同时可拓展至其他智能算法的应用场景。
1
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 想轻松敲开编程大门吗?Python 就是你的不二之选!它作为当今最热门的编程语言,以简洁优雅的语法和强大的功能,深受全球开发者喜爱。该文档为你开启一段精彩的 Python 学习之旅。从基础语法的细致讲解,到实用项目的实战演练,逐步提升你的编程能力。无论是数据科学领域的数据分析与可视化,还是 Web 开发中的网站搭建,Python 都能游刃有余。无论你是编程小白,还是想进阶的老手,这篇博文都能让你收获满满,快一起踏上 Python 编程的奇妙之旅!
2025-10-16 13:15:25 4.53MB python
1
粒子群优化(PSO)技术在舵机系统中的应用,特别是用于优化线性自抗扰控制(LADRC)的参数。舵机系统作为船舶或飞行器的关键执行机构,其性能直接影响整体安全性和稳定性。传统的LADRC虽然表现出色,但在参数固定的情况下缺乏灵活性。PSO作为一种智能搜索算法,能够通过迭代方式找到最佳参数组合,从而提高系统的响应速度、稳定性和抗干扰能力。文中还展示了大量实验对比,证明了PSO优化后的LADRC在多个方面的显著优势。 适合人群:从事自动化控制、机械工程及相关领域的研究人员和技术人员。 使用场景及目标:① 提高舵机系统的性能和灵活性;② 在复杂多变的环境中确保系统的稳定性和适应性;③ 探索新型控制算法的应用前景。 其他说明:本文不仅探讨了理论背景,还提供了具体的实验数据支持,有助于读者深入理解和实际应用。
2025-10-15 20:19:39 839KB
1
基于市场的任务分配多智能体协同matlab代码
2025-10-14 23:47:58 6KB matlab 机器人 多智能体协同
1