TensorFlow2实战-系列教程1:搭建神经网络进行分类任务 TensorFlow2实战-系列教程2:搭建神经网络进行回归任务 导包读数据 标签制作与数据预处理 基于Keras构建网络模型 更改初始化方法 加入正则化惩罚项 展示测试结果 - activation:激活函数的选择,一般常用relu - kernel_initializer,bias_initializer:权重与偏置参数的初始化方法 - kernel_regularizer,bias_regularizer:要不要加入正则化 - inputs:输入,可以自己指定,也可以让网络自动选 units:神经元个数
2024-08-21 14:24:40 17.65MB 课程资源 神经网络
1
主要介绍了pytorch快速搭建神经网络_Sequential操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2024-04-10 15:00:30 77KB pytorch 神经网络 Sequential
1
使用PyTorch逐步搭建神经网络代码(附逐句讲解) 逐句讲解位于本人的“使用PyTorch构建神经网络(详细步骤讲解+注释版)”系列博客中。
2023-01-02 20:27:35 4KB 神经网络 入门学习
1
使用PyTorch逐步搭建神经网络代码(附逐句讲解) 逐句讲解位于本人的“使用PyTorch构建神经网络(详细步骤讲解+注释版)”系列博客中。 与经典版代码相比,优化了建模过程,提升了模型表现
2023-01-02 20:27:34 4KB 神经网络
1
使用tensoflow2搭建神经网络进行歌曲分类,使用librosa进行歌曲信号的特征提取
2022-12-17 16:28:12 56.89MB 神经网络
1
博客:pytorch 搭建神经网络最简版 配套资源
2022-11-16 15:02:17 13KB 神经网络
1
@本文来源于公众号:csdn2299,喜欢可以关注公众号 程序员学府 有时候我们训练了一个模型, 希望保存它下次直接使用,不需要下次再花时间去训练 ,本节我们来讲解一下PyTorch快速搭建神经网络及其保存提取方法详解 一、PyTorch快速搭建神经网络方法 先看实验代码: import torch import torch.nn.functional as F # 方法1,通过定义一个Net类来建立神经网络 class Net(torch.nn.Module): def __init__(self, n_feature, n_hidden, n_output): super(N
2022-05-31 14:24:19 80KB c OR python
1
以MNIST数据集为例,详解PyTorch搭建神经网络方法步骤,详情可参考文章:https://blog.csdn.net/didi_ya/article/details/121457652
2021-12-05 19:02:25 356KB python pytorch
1
本文来自csdn,本文主要通过代码实例详细介绍了卷积神经网络(CNN)架构中的卷积层,池化层和全连接层,希望对您的学习有所帮助。卷积神经网络的基础内容可以参考:机器学习算法之卷积神经网络卷积神经网络一般包括卷积层,池化层和全连接层,下面分别介绍一下2.1卷积层卷积神经网络里面的这个卷积和信号里面的卷积是有些差别的,信号中的卷积计算分为镜像相乘相加,卷积层中的卷积没有镜像这一操作,直接是相乘和相加,如下图所示最左边的是卷积的输入,中间的为卷积核,最右边的为卷积的输出。可以发现卷积计算很简单,就是卷积核与输入对应位置相乘然后求和。除了图中绿颜色的例子,我们可以计算一下图中红色圈对应的卷积结果:(-
1
有时候我们训练了一个模型, 希望保存它下次直接使用,不需要下次再花时间去训练 ,本节我们来讲解一下PyTorch快速搭建神经网络及其保存提取方法详解 一、PyTorch快速搭建神经网络方法 先看实验代码: import torch import torch.nn.functional as F # 方法1,通过定义一个Net类来建立神经网络 class Net(torch.nn.Module): def __init__(self, n_feature, n_hidden, n_output): super(Net, self).__init__() self.hi
2021-10-27 14:29:27 65KB c OR 方法
1