本文介绍了基于Matlab的掺镱光纤激光器(YDFL)脉冲锁定过程的仿真方法,包括时间域和频域分析。通过非线性偏振旋转(NPR)机制,模拟了锁模掺镱光纤激光器的特性。文章提供了详细的MATLAB代码示例,展示了如何设置参数、生成高斯脉冲、进行频域变换以及应用色散和损耗效应。此外,还介绍了如何生成和绘制模式锁定和未锁定的脉冲序列,包括时间域形状的模拟和图形展示。代码示例涵盖了初始脉冲生成、频域分析、线性传播效应模拟以及结果可视化,为读者提供了实用的仿真工具和方法。 在本文中,作者详细介绍了利用Matlab软件进行掺镱光纤激光器仿真过程的各个方面。掺镱光纤激光器(YDFL)是利用稀土元素镱作为增益介质的激光器,具有多样的应用领域,包括光学通信、激光雷达和材料加工等。仿真技术允许研究者在不实际制造激光器的情况下,研究激光器的动态特性以及如何优化性能。本文着重于脉冲锁定过程的仿真,这是指激光器输出特定重复频率和脉冲形状的能力。 在时间域分析中,仿真模拟了激光器的时序行为,包括脉冲的生成、传播和相互作用。而频域分析则关注脉冲频谱的特性,这对于理解脉冲质量及其稳定性至关重要。通过非线性偏振旋转(NPR)机制的模拟,研究者可以探索锁模掺镱光纤激光器的锁模机制,这是一种常见的产生超短脉冲的技术。 文章提供了一套详细的MATLAB代码示例,这些代码允许用户设置各种参数,如初始脉冲的特性、激光器的工作模式和环境条件。代码中的高斯脉冲生成是实现精确仿真不可或缺的一部分,它为后续的模拟和分析奠定了基础。频域变换的实现揭示了脉冲频谱的结构,为分析频域特性提供了工具。同时,色散和损耗效应的应用仿真,让研究者能够模拟真实的物理现象,如群速度色散、非线性效应等,从而获得更加准确的仿真结果。 模式锁定的仿真部分,作者着重说明了如何在仿真中实现并展示脉冲序列的锁定和未锁定状态。在模式锁定状态下,激光器输出稳定且间隔均匀的脉冲序列;而在未锁定状态下,脉冲序列可能会出现不稳定或不规则的情况。作者提供了时间域形状的模拟方法和图形展示技术,使得仿真结果直观可见。 本文章的代码示例不仅为读者提供了设置初始参数的方法,还演示了如何在仿真过程中实现线性传播效应的模拟,并利用Matlab强大的可视化功能对仿真结果进行展示。通过这些示例,读者可以更深入地理解掺镱光纤激光器的物理过程,并能够自己进行仿真研究。 本文提供了一套完整的仿真工具和方法,有助于推动掺镱光纤激光器的研究和开发。这些仿真工具不仅限于学术界的研究人员,还可能被工业界的技术开发者所利用,以优化掺镱光纤激光器的设计,提高其性能,并进一步扩展其在各种高科技领域的应用。
2025-12-27 17:29:24 531KB 软件开发 源码
1
高功率光纤激光器多选用掺镱双包层光纤作为增益介质。掺镱双包层光纤与普通非掺杂光纤相似,由于纤芯尺寸非常小,一般为几微米至几十微米量级,极容易产生自脉冲效应。进行了大功率条件下掺镱光纤激光器自脉冲效应的研究,观察到不同的自脉冲现象。 研究结果表明,在大功率激光作用下,尽管镱离子不存在浓度淬灭,但是对于大芯径掺镱双包层光纤,与其他三能级系统相同,均存在弛豫振荡引发的饱和吸收自脉冲效应。掺镱光纤激光器中的饱和吸收效应、受激布里渊散射、受激拉曼散射等自脉冲效应不容忽视。
2021-02-26 14:06:40 1.6MB 激光器 光纤激光 自脉冲效
1
实验研究了主动调Q掺镱光纤激光器(YDFL)中放大自发辐射(ASE)对调Q脉冲形成和演化的影响。结果表明,尾纤型声光调制器(AOM)打开过快和掺镜光纤(YDF)增益瞬态特性间的综合相互作用结果,使得注入至腔内的初始宽带ASE形成功率波动,并在腔内循环放大,导致输出脉冲呈多峰结构;而注入的宽带ASE因功率过高会导致YDF的增益自饱和效应,制约高增益的获取,使激光器难以获得调Q激光脉冲,输出脉冲主要为调Q的ASE脉冲;通过引入光纤布拉格光栅(FBG),可以有效抑制YDF中因ASE产生的增益饱和效应,YDF工作在高增益状态,有利于获得低阈值、窄脉宽和高峰值功率的调Q激光脉冲。引入FBG后,在160 mW抽运时,实验测得的调Q激光脉冲峰值功率和脉宽分别为40.7 W和30 ns。
2021-02-09 22:05:22 2.46MB 激光器 掺镱光纤 主动调Q 放大自发
1