电磁声发射检测技术是一种新型的无损检测技术,主要用于金属构件的缺陷检测和损伤评估。该技术通过对金属构件施加电磁加载,使得材料内部裂纹产生洛伦兹力,从而激发声发射信号。洛伦兹力是由于带电粒子在磁场中运动所产生的力,此力作用在裂纹处,可以看作是一种“声发射源”,产生的声发射信号包含了材料内部缺陷和损伤程度的信息。 电磁超声换能器(EMAT)是电磁超声技术的关键组件,能够在金属材料的集肤层内激发超声波。EMAT的工作原理是利用电磁-应力耦合效应,在金属表面产生超声波,而不需要耦合介质,这使得EMAT在高温、高压等恶劣环境下依然能够进行有效检测。相比于传统的压电换能器,EMAT具有非接触、无需耦合剂、可在线检测等优点。 在郭富坤等人的研究中,通过将EMAT电磁加载装置应用于电磁声发射检测,构建了一个具备输出激励信号、数据采集、信号处理和数据存储功能的虚拟仪器,并搭建了完整的实验系统。利用这套系统进行了铝板和钢板试件的检测实验,通过对比人工缺陷、通孔和完好板材的信号,验证了EMAT在电磁声发射检测中的有效性。 研究中提到的虚拟仪器技术是结合了计算机与传统仪器功能的一项技术,它能够利用软件来定义仪器的功能和界面,从而实现传统仪器的功能。这种技术具有成本低、灵活性高、扩展性强的优点,特别适合用于定制化的检测系统搭建。数据采集系统通常包括传感器、数据采集卡、数据处理与存储装置,能够实现信号的实时采集、处理和分析。 在实验中,通过人工引入缺陷的试件、通孔和完整无损的试件这三类不同的样本,研究者比较了它们各自的信号特征。结果显示,利用EMAT技术能够有效地检测到由裂纹引起的电磁声发射信号,且信号特征与材料的缺陷情况密切相关,能够对缺陷的有无和损伤程度进行评估。 国家自然科学基金和高等学校博士学科点专项科研基金的资助,显示了这项研究受到了国家层面的重视。这表明了对先进检测技术在国民经济和国防建设中应用的重视,同时,对于保障大型金属构件的安全性和可靠性具有重要的现实意义。特别是在航空航天、高铁建设等关键领域,通过有效的无损检测技术可以预防潜在的安全隐患,避免灾难性事故的发生。 总结来说,基于EMAT的电磁声发射检测方法是一种高效、准确、适应性广的无损检测手段。这项技术不仅在理论上得到了深入的研究,而且通过实验验证了其在实际应用中的可行性,具有广泛的应用前景和研究价值。随着技术的进一步发展和优化,该检测方法有望在更多的领域得到推广应用。
2025-12-08 20:32:00 1.06MB 首发论文
1
内容概要:本文详细介绍了使用COMSOL进行声固耦合和压电换能器系统的仿真建模。首先,构建了一个长条形压电陶瓷两端接金属块的基础模型,通过设置固体力学、压力声学和压电效应三个模块,实现了声波从发射端到接收端的完整传输过程。文中强调了材料参数设置的重要性,尤其是压电陶瓷的弹性矩阵和压电系数矩阵。边界条件的设定也是关键,包括发射端的电压激励和接收端的完美匹配层(PML)。求解器配置方面,推荐使用频域-瞬态耦合求解,确保能够捕捉稳态和瞬态响应。此外,还讨论了如何通过调整压电材料参数和几何尺寸优化仿真效果,以及如何处理常见的仿真问题,如驻波效应和能量守恒。 适合人群:从事声学仿真、压电材料研究及相关领域的科研人员和技术工程师。 使用场景及目标:适用于需要精确模拟声固耦合和压电效应的研究和工程设计,帮助研究人员理解和优化声波在不同介质中的传播行为及其与结构振动的相互作用。 其他说明:文中提供了详细的MATLAB和COMSOL代码片段,便于读者复现实验过程。同时提醒读者在多物理场仿真中应注意的常见陷阱和解决方案,强调了逐步调试和参数优化的重要性。
2025-11-23 15:29:22 8.62MB
1
内容概要:本文详细探讨了使用Comsol软件进行超声换能器聚焦及其相控阵聚焦仿真的过程。首先介绍了如何在Comsol中建立换能器的几何模型,设置材料属性和波长参数,并利用电磁仿真功能模拟超声信号的传播和聚焦效果。接着讨论了相控阵技术的基本原理,即通过控制多个换能器阵列中各换能器的相位和振幅来实现声波的定向控制和精确聚焦。文中还提供了简单的代码片段,展示了如何创建单个换能器模型、设置参数并将它们组合成相控阵模型。最后总结了这些仿真方法的应用前景,特别是在医学成像、无损检测和工业领域的潜力。 适合人群:从事超声换能器设计、医学成像、无损检测和工业应用的研究人员和技术人员。 使用场景及目标:①帮助研究人员理解和掌握Comsol软件中超声换能器聚焦仿真的具体步骤;②为技术人员提供优化换能器设计的方法和工具;③推动超声换能器在相关领域的创新和发展。 其他说明:随着科技的进步,未来的仿真技术和方法将进一步提升超声换能器的设计和性能优化能力。
2025-10-21 22:51:41 457KB Comsol 医学成像
1
基于Comsol软件的超声换能器相控阵聚焦仿真研究,基于Comsol仿真平台:超声换能器聚焦及相控阵仿真技术研究,Comsol超声能器聚焦 仿真 超声能器相控阵聚焦仿真 ,Comsol; 超声换能器; 聚焦; 仿真; 相控阵聚焦仿真,Comsol仿真超声换能器相控阵聚焦技术 超声换能器是将一种形式的能量转换为另一种形式的能量的器件,特别是在超声波技术领域,它能够将电信号转换为机械振动,产生超声波。相控阵技术则是利用电子技术对多个换能器单元的相位进行控制,实现波束的定向发射和接收,从而达到聚焦和扫描的目的。Comsol软件作为一种强大的多物理场仿真工具,可以帮助研究人员在计算机上模拟超声换能器相控阵聚焦的过程,无需实际制作物理样机,节省了时间和成本。 在本文中,我们将探讨基于Comsol软件的超声换能器相控阵聚焦仿真研究,以及相关的仿真技术研究。研究的主要内容包括超声换能器聚焦的基本原理、相控阵聚焦技术的仿真方法以及如何通过Comsol软件实现上述过程。仿真模拟可以预测超声换能器在不同条件下的性能,包括聚焦点的位置、聚焦深度、声场分布等关键参数。此外,通过仿真可以对换能器的设计进行优化,例如调整换能器的尺寸、形状和材料等,以达到最佳的聚焦效果。 在仿真过程中,研究者需要构建准确的物理模型,设置合理的边界条件和材料参数,这样才能确保仿真的真实性和准确性。Comsol软件提供了丰富的物理场接口,包括声学模块、电磁模块和结构力学模块等,研究者可以根据需要选择合适的模块进行仿真。 从文件名列表中可以看出,相关的技术文档和文章标题集中反映了研究的方向和重点。例如,“聚焦未来超声换能器相控阵仿真的探索”可能指出了该研究的前瞻性和创新点,“技术博文超声换能器聚焦仿真与超声换能器”则可能涵盖了换能器聚焦仿真与相控阵技术的结合应用。而“仿真下的超声换能器相控阵聚焦技术一引子在无损检测与”可能探讨了相控阵聚焦技术在无损检测领域的应用前景。 本文将全面介绍基于Comsol软件的超声换能器相控阵聚焦仿真研究的相关知识,包括基本原理、仿真方法、优化设计和应用前景等。通过这些内容的探讨,可以为超声波技术的研究和开发提供理论支持和技术指导。
2025-10-21 22:48:02 601KB paas
1
内容概要:本文详细介绍了如何使用Comsol进行超声换能器聚焦及其相控阵聚焦的仿真。首先解释了超声换能器的工作原理,接着逐步展示了如何在Comsol中建立单个换能器的模型,包括设定材料属性、边界条件等步骤。随后探讨了相控阵聚焦的实现方式,通过控制各换能器单元的相位来达到特定位置的聚焦效果。文中还特别强调了一些容易忽视的技术细节,如材料衰减设置、相位延迟计算、网格划分技巧等,并提供了具体的Matlab代码示例。此外,作者分享了许多实践经验,帮助读者更好地理解和应用这些仿真技术。 适合人群:从事声学研究的专业人士,尤其是那些希望深入了解超声换能器特性的研究人员和技术工程师。 使用场景及目标:适用于需要评估或改进超声设备性能的研究项目,旨在提高超声成像质量和材料无损检测精度。通过对超声换能器聚焦特性的仿真分析,可以优化设备的设计参数,提升实际应用中的表现。 其他说明:文中不仅涵盖了理论知识,还包括大量实用的操作指南和代码片段,有助于读者快速上手并在实践中不断积累经验。
2025-10-21 22:43:10 152KB
1
图 4.4 换能器发射电压响应曲线计算结果 【2】换能器导纳 时间历程后处理(post26),在任何一个电压自由度(Volt)耦合部中选取节点 序号最低的节点(一般取正极耦合部),提取节点反作用力结果数据 Amp-电荷值, 记为 Q,已知激励电压(求解时施加的载荷)为 V,利用后处理器提供的数学运算 工具,换能器导纳值 Y以及 G分量、B分量由以下公式获得: Re[ ] Im[ ] Q QtY j V V G Y B Y ω ∂ ∂= = = = (4.15) 从换能器导纳 G、B曲线(图 4.5)可以得到下列参数: 两个谐振频率:13.9kHz和 19.2kHz 基频下换能器最大电导: m 基频谐振时换能器等效阻抗R1=1/ Gm=1.408kΩ 图 4.6 为换能器导纳圆图计算结果。 导纳圆图的绘制方法:在时间历程后处理菜单中,选 Setting G 命令,指 定横坐标变量为电导 G变量,复数变量设置显示实部。绘图命令绘出电纳 B曲线, 就会得到导纳圆图。 绘图的坐标轴刻度、曲线型、显示内容、字体样式等在下拉菜单 PlotCtrls 功 能条内,各种功能需要不断熟悉才能灵活运用。 G =0.71mS raph
2023-02-15 20:22:08 1.6MB 有限元分析 换能器
1
压电换能器电阻抗匹配电路的分析与研究pdf,压电换能器电阻抗匹配电路的分析与研究
2023-01-18 00:14:40 227KB
1
ansys经典界面分析换能器源代码,复制代码粘贴在命令栏即可
2022-10-29 14:06:53 15KB ansys 换能器 代码
1