网络文本情感分析方法主要分为两大途径,无监督情感分析方法和有监督情感分析方法[2]。在2002年PANG等学者首次采用电影评论数据建立了使用机器学习的有监督情感分类方法。他分别使用了支持向量机(SVM)、朴素贝叶斯(NB)、最大熵(ME)分类器,二情感分类特征主要采用情感词频[3]。实验表明基于机器学习的有监督分类结果准确率要高于基于传统的无监督方法。文献[4]也提出了一种结合SVM和NB分类器的新模型(NBSVM),这种新的模型在多个数据集都取得了很好的分类效果。有监督网络评论情感分类方法是基于标注训练集语料来进行评论分类的,而标注的语料具有领域依赖性,因此有监督网络评论情感分类效果的好坏与文本领域有直接的关系。在一个领域标注的训练集训练的分类器很可能在另一个领域分类效果并不好。所以,有监督情感分类方法需要在不同领域标注大量不同的训练集,才能取得比较好的分类效果。但是,在众多领域都标注大量训练集是一项十分困难的事情,需要消耗大量的人力物力,已经成为有监督情感分类的瓶颈。
2024-06-13 23:05:47 9.49MB 网络 网络 机器学习 支持向量机
1
1.train_feature.csv 训练集特征数据,每个时刻1个数据,每天8个时刻,共17008条。 2. train_label.csv 训练集标签数据,每天1个数据,共2126个数据。 3.test_feature.csv 测试集特征数据,每个时刻1个数据,每天8个时刻,共7320条数据,
1
基于BP网络的上证指数预测方法,内含数据集以及处理源码以及教程。预测涨跌
2022-12-12 11:28:59 16KB 上证指数 BP网络 数据集
MATLAB神经网络之SVM神经网络的回归预测分析---上证开盘指数预测.zip
2022-11-22 09:25:05 185KB matlab 数学建模 源程序代码 算法
MATLAB源程序14 SVM神经网络的回归预测分析---上证开盘指数预测.zip
2022-11-18 16:27:37 187KB MATLAB 神经网络 智能算法
基于隐马尔可夫链与gru循环神经网络模型的交通拥堵指数预测 关键词 时序预测 XGBoost ARiMA GRU Network 说明 本项目使用GRU神经网络来对深圳北站附近的12条道路的交通拥堵指数(TTI)进行时序预测。 描述详见赛题说明.pdf。 report.pdf为实验报告。 关键词 时序预测 XGBoost ARiMA GRU Network 说明 本项目使用GRU神经网络来对深圳北站附近的12条道路的交通拥堵指数(TTI)进行时序预测。 描述详见赛题说明.pdf。 report.pdf为实验报告。 关键词 时序预测 XGBoost ARiMA GRU Network 说明 本项目使用GRU神经网络来对深圳北站附近的12条道路的交通拥堵指数(TTI)进行时序预测。 描述详见赛题说明.pdf。 report.pdf为实验报告。
代码 基于SVM神经网络的上证开盘指数预测回归预测分析代码代码 基于SVM神经网络的上证开盘指数预测回归预测分析代码代码 基于SVM神经网络的上证开盘指数预测回归预测分析代码代码 基于SVM神经网络的上证开盘指数预测回归预测分析代码代码 基于SVM神经网络的上证开盘指数预测回归预测分析代码代码 基于SVM神经网络的上证开盘指数预测回归预测分析代码代码 基于SVM神经网络的上证开盘指数预测回归预测分析代码代码 基于SVM神经网络的上证开盘指数预测回归预测分析代码代码 基于SVM神经网络的上证开盘指数预测回归预测分析代码代码 基于SVM神经网络的上证开盘指数预测回归预测分析代码代码 基于SVM神经网络的上证开盘指数预测回归预测分析代码代码 基于SVM神经网络的上证开盘指数预测回归预测分析代码代码 基于SVM神经网络的上证开盘指数预测回归预测分析代码代码 基于SVM神经网络的上证开盘指数预测回归预测分析代码代码 基于SVM神经网络的上证开盘指数预测回归预测分析代码代码 基于SVM神经网络的上证开盘指数预测回归预测分析代码代码 基于SVM神经网络的上证开盘指数预测回归预测分析代码代码 基于SV
2022-06-04 18:06:41 174KB 支持向量机 神经网络 回归 文档资料
案例14 SVM神经网络的回归预测分析---上证开盘指数预测.7z
2022-05-15 18:00:53 156KB 支持向量机 神经网络 回归 文档资料
matlab16 基于SVM的回归预测分析——上证指数开盘指数预测.
2022-05-04 20:15:45 219KB
1