低速率拒绝服务(LDoS,low-rate denial of service)攻击是一种降质服务(RoQ,reduction of quality)攻击,具有平均速率低和隐蔽性强的特点,它是云计算平台和大数据中心面临的最大安全威胁之一。提取了LDoS攻击流量的3个内在特征,建立基于BP神经网络的LDoS攻击分类器,提出了基于联合特征的LDoS攻击检测方法。该方法将LDoS攻击的3个内在特征组成联合特征作为BP神经网络的输入,通过预先设定的决策指标,达到检测LDoS攻击的目的。采用LDoS攻击流量专用产生工具,在NS2仿真平台和test-bed网络环境中对检测算法进行了测试与验证,实验结果表明通过假设检验得出检测率为 96.68%。与现有研究成果比较说明基于联合特征的LDoS攻击检测性优于单个特征,并具有较高的计算效率。
摘要:软件定义网络(software defined networking,SDN)是一种新型网络创新架构,其分离了控制平面与转发平面,使得网络管理更为灵活。借助SDN控制与转发分离的思想,在SDN基础上引入一个集中式安全中心,在数据平面设备上采集数据,用于对网络流量进行分析,通过熵值计算和分类算法判断异常流量行为。对于检测到的网络异常情况,安全中心通过与SDN控制器的接口通告SDN控制器上的安全处理模块,进行流表策略的下发,进而缓解网络异常行为。通过本系统可以在不影响SDN控制器性能的情况下,快速检测网络中的异常行为,并通过SDN下发流表策略对恶意攻击用户进行限制,同时对SDN控制器进行保护。