程序名称:基于EMD(经验模态分解)-KPCA(核主成分分析)-LSTM的光伏功率预测模型 实现平台:matlab 代码简介:提高光伏发电功率预测精度,对于保证电力系统的安全调度和稳定运行具有重要意义。提出一种经验模态分解 (EMD)、核主成分分析(KPCA)和长短期记忆神经网络(LSTM)相结合的光伏功率预测模型。充分考虑制约光伏输出功率的4种环 境因素,首先利用EMD将环境因素序列进行分解,得到数据信号在不同时间尺度上的变化情况,降低环境因素序列的非平稳 性;其次利用KPCA提取特征序列的关键影响因子,消除原始序列的相关性和冗余性,降低模型输入的维度;最终利用LSTM网络 对多变量特征序列进行动态时间建模,实现对光伏发电功率的预测。实验结果表明,该预测模型较传统光伏功率预测方法有更高的精确度。附带参考文献。本代码在原文献上进行了改进,采用KPCA代替PCA,进一步提升了预测精度。代码具有一定创新性,且模块化编写,可自由根据需要更改完善模型,如将EMD替换成VMD CEEMD CEEMDAN EEMD等分解算法,对LSTM进一步改善,替换为GRU,BILSTM等。代码注释详细,无
2025-11-04 15:52:19 1.07MB lstm matlab
1
内容概要:文档主要介绍了食用油品质检测与分析的四种技术手段。一是食用油品种识别,通过高光谱图谱结合GLCM算法提取油品纹理特征,再运用GA-SVM模型进行分类,最终以主成分分析散点图和层序聚类图展示分类结果。二是食用油的掺假鉴别,采用SI-PLSR方法建立油茶籽油掺假量预测模型,通过掺假浓度可视化预测图像直观展示掺假程度。三是理化定量预测,利用PCR和PLSR算法建立酸价、过氧化值等理化指标的预测模型并展示预测结果图。四是转基因油品预测,通过对油光谱预处理后建模,以不同颜色油滴标识转基因与否。; 适合人群:食品科学领域研究人员、食用油品质检测技术人员及相关专业的高校师生。; 使用场景及目标:①帮助专业人员掌握食用油品质检测的前沿技术;②为科研教学提供案例参考,提升教学质量;③为实验室检测提供具体操作指导和技术支持。; 其他说明:文档中提到的技术手段均配有图示或动态演示,有助于更直观地理解各个步骤及最终结果。
1
图 3.9 选择掩膜波段 图 3.10 主成分分析参数设置 二、确定羟基异常成分 工具/Statistics/View Statistics File,打开 1457PCA.sta 文件,弹出下图对话框。根据判别 规则,确定第 4 个成分为含有羟基异常的成分。 注:用 TM1、TM4、TM5、TM7 四个波段进行 PCA,对代表羟基化物主分量的判断准则 是:构成该主分量的特征向量,其 TM5 系数应与 TM7 及 TM4 的系数符号相反,TM1 一般 与 TM5 系数符号相同。羟基信息包含于符合这一判断准则的主分量内,故此主分量可称为 羟基异常主分量(第四分量)。
2025-10-04 14:14:58 22.32MB ENVI
1
资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 基于MATLAB的PCA主成分分析应用:以不同浓度混合物拉曼光谱数据为例 实验背景 选取多组不同浓度混合物的拉曼光谱作为原始数据,利用主成分分析(PCA)提取关键特征,实现数据降维与可视化。 核心步骤 a. 数据预处理:对原始光谱进行基线校正、归一化及去噪,消除仪器漂移与背景干扰。 b. 协方差矩阵计算:基于预处理后的光谱矩阵,计算协方差以量化变量间的线性相关性。 c. 特征值分解:对协方差矩阵进行特征值分解,得到特征值与特征向量,按特征值大小排序。 d. 主成分提取:选取累计贡献率≥85%的前k个主成分,构建新的低维特征空间。 e. 结果可视化:绘制得分图(Scores Plot)与载荷图(Loadings Plot),直观展示样本分布与变量贡献。 MATLAB实现要点 使用pca函数或手动实现SVD分解; 通过scatter绘制得分图,bar展示载荷分布; 结合cumsum计算累计方差贡献率,确定主成分数量。 分析价值 PCA可有效分离浓度差异与光谱特征,辅助快速识别混合物组分,为后续定量建模或分类提供可靠输入。 (注:本示例聚焦PCA流程与光谱数据处理逻辑,代码细节需结合具体实验数据调整。)
2025-09-23 11:15:16 348B PCA主成分分析
1
独立成分分析(ICA)是一种统计方法,用于从多个混合信号中分离出潜在的、非高斯分布的独立源。在MATLAB中,ICA工具箱提供了一系列算法和函数,帮助研究人员和工程师处理这样的问题。该工具箱广泛应用于信号处理、生物医学工程、图像处理、金融数据分析等领域。 ICA的基本假设是,混合信号可以看作是几个独立源信号通过线性非对称变换的结果。目标是找出这个变换,即解混矩阵,以恢复原始的独立源信号。MATLAB ICA工具箱中的主要算法包括FastICA、JADE、Infomax等,这些算法各有优缺点,适用于不同的应用场景。 1. FastICA算法:FastICA是快速独立成分分析的简称,由Aapo Hyvärinen提出。它通过最大化非高斯性来估计源信号,计算速度较快,适用于大型数据集。FastICA在MATLAB工具箱中通过`fastica`函数实现。 2. JADE算法:Joint Approximate Diagonalization of Eigenmatrices,由Cardoso和Soulier提出,旨在通过保持数据的第四阶矩对称性来估计源信号。JADE在处理具有近似对称分布的源信号时表现出色。在MATLAB中,`jade`函数用于执行JADE算法。 3. Infomax算法:Infomax是Information Maximization的缩写,旨在最大化互信息,由Bell和Sejnowski提出。Infomax分为局部和全局两种版本,其中全局Infomax更适用于复杂的混合情况。MATLAB中的`infomax`函数可以实现Infomax算法。 MATLAB ICA工具箱还包括用于预处理、可视化和评估结果的辅助函数。例如,`prewhiten`函数用于预处理数据,消除数据的共线性;`ploticasources`和`ploticaevoked`用于可视化源信号和混合信号;`compare_sources`函数可以帮助评估不同算法的性能。 在实际应用中,使用ICA工具箱的一般步骤包括: 1. 数据预处理:去除噪声,标准化数据,可能需要使用`prewhiten`等函数。 2. 选择合适的ICA算法:根据数据特性和需求选择FastICA、JADE或Infomax。 3. 执行ICA:调用相应的函数进行源信号分离。 4. 评估与验证:利用可视化工具检查结果,并可能需要调整参数以优化性能。 5. 解码和解释:理解分离出的独立成分的物理意义,这通常需要领域知识。 在`gift-master`这个压缩包中,可能包含了ICA相关的示例代码、数据集以及说明文档,用户可以通过这些资源深入了解和实践ICA方法。使用这些资源,开发者可以更有效地学习如何在MATLAB环境中应用ICA工具箱解决实际问题。
2025-06-18 18:46:31 22.3MB MATLAB工具箱
1
一般食物的都有,excel版本,方便查找各种营养素
2025-06-02 22:39:24 401KB 食物成分表
1
近红外光谱技术是一种基于物质在近红外区域内对光的吸收特性来进行分析的光谱技术,该技术结合了光谱测量技术与化学计量学方法,近年来在食品成分分析及质量控制方面得到了广泛的研究和应用。由于近红外光谱技术具有非破坏性、快速、不使用化学试剂、无环境污染等特点,它在食品安全检测和质量控制中扮演了重要角色。 一、近红外光谱技术的原理与特点 近红外光谱是指物质在波长780nm到2526nm范围内的吸收光谱。该区域的电磁波是人们最早认识的非可见光区域,具有波粒二重性。近红外光谱的产生主要与物质分子振动的非谐振性有关,它主要测量的是含氢官能团(如C-H、N-H、S-H和O-H等)伸缩振动产生的基频振动的倍频和合频吸收。 近红外光谱技术的特点主要包括以下几点: 1. 许多物质在近红外区域的吸收系数较小,使得分析过程较为简单。 2. 光散射效应及穿透深度较大,允许使用漫反射技术直接对样品进行测定。 3. 近红外光可以在玻璃或石英介质中穿透。 4. 分析过程的投资和操作成本较低。 5. 可以用于样品的定性分析和定量测定。 6. 分析过程不会破坏样品,不需要使用化学试剂,不会造成环境污染。 7. 测定速度快,作为快速检测手段具有其他方法无法比拟的优势。 二、近红外光谱技术的应用进展 近红外光谱技术最初用于农产品分析,但随着技术的发展,它已经被广泛应用于食品、化工、医药和轻工等多个领域的成分分析检测。目前,该技术已经发展成为一种量测信号数字化、分析过程绿色化的新检测方法。 在食品工业中,近红外光谱技术主要用于食品成分的定性分析和定量测定,例如水分、蛋白质、脂肪、糖分、酸度等食品主要成分的测定。此外,该技术还被用于食品添加剂、农药残留等有害物质的检测,以确保食品的安全和质量。 三、近红外光谱技术的挑战与展望 尽管近红外光谱技术具有许多优势,但在实际应用中也面临一些挑战。例如,由于近红外区的光谱信号复杂,存在多个振动谱带重叠的现象,因此精确解析谱带的归属较为困难。此外,影响近红外谱带位置的因素较多,如氢键作用、溶液稀释、温度变化等,都可能造成谱带位置的偏移。近红外光谱技术作为一种间接测量技术,其测定的准确性依赖于标准方法提供的数据质量以及化学计量学建立的数学模型的合理性。因此,建立更加精确的标准方法和数学模型是提高近红外光谱技术测定准确度的关键。 随着科学技术的进步,近红外光谱技术在食品成分及质量控制方面的研究和应用前景广阔。未来的研究方向可能会集中在提高光谱数据的处理和分析算法的精确度、开发更为高效和精确的校正样品集、探索新的光谱预处理方法以及进一步降低成本和操作难度等方面。这些努力将使近红外光谱技术在食品检测和质量控制领域发挥更大的作用,为保障食品安全和提高食品质量做出贡献。
2025-05-30 10:27:51 772KB 首发论文
1
DMRG算法 一维量子多体系统的主成分分析 此存储库包含密度矩阵重新归一化组或MATLAB中的示例代码,该示例代码使用类似于统计来研究一维量子多体系统的低能物理学。 该代码的组织方式如下: OBCdmrg:在开放边界条件下实现基态DMRG(在零温度下)。 t-dmrg:在零温度下实现时间相关的DMRG。 LowTdmrg:将t-dmrg扩展到假想时间的演变过程,以研究有限温度物理学。
2025-05-14 12:49:51 74.69MB MATLAB
1
本文先介绍了人脸识别的相关理论,说明了人脸识别在身份识别中的优势和重要地位,然后介绍了人脸识别的相关理论包括主成分分析、多为空间距离等;然后对人脸识别算法进行设计和实验,人脸识别的核心工作包括两个部分,一是人脸的特征表示,通过图像预处理(包括图像去噪、图像几何归一化、图像灰度归一化等处理步骤),可以使用基于主成分的方法对图像进行降维处理;二是利用主成分分析得到的子空间基向量,可以将人脸图像预处理之后的结果嵌入到子空间,并将测试人脸嵌入到子空间,利用欧式距离计算测试样本与其他欧式点的距离,并选择距离最小的人脸的分类作为识别结果。实验结果表明,基于PCA的人脸特征和人脸识别有很高识别度。
2025-03-30 17:25:54 313KB
1
核主元分析KPCA,主要用于数据降维。核主成分分析(Kernel Principal Component Analysis, KPCA)方法是PCA方法的改进,从名字上也可以很容易看出,不同之处就在于“核”。使用核函数的目的:用以构造复杂的非线性分类器。
2024-09-10 11:35:14 209KB 特征降维
1