### 双运放组成的恒流源-TI方案 #### 概述 在现代电子系统设计中,恒流源作为一种能够提供稳定电流输出的关键组件,在多种应用场合中扮演着至关重要的角色。本文介绍了一种利用双运放实现的高电压双向恒流源的设计方案,该方案由德州仪器(TI)的应用工程师John Caldwell提出,并首次发布于EN-Genius.net网站。通过结合具有宽输入共模范围的集成差分放大器与自举电源技术,这一设计不仅能够克服传统电路中的局限性,还能够在较宽的负载阻抗范围内实现线性工作。 #### 基本原理与结构 ##### 传统的Howland电流泵 传统的Howland电流泵电路是一种利用运算放大器和几个电阻来实现电压到电流转换的经典方法。如图1所示,当芯片内部的四个电阻值相等时,输出电流与输入电压之间的关系可以表示为: \[ I_{out} = \frac{V_{in}}{R} \] 这里的 \( R \) 表示内部电阻值。由于集成差分放大器内的电阻匹配度非常高,这种拓扑结构能够实现极高的输出阻抗。 ##### 局限性 然而,这种电路存在一定的局限性。大多数集成差分放大器被设计用于在36V的电源电压下工作,因此,尽管这些电路理论上可以提供所需的输出电流,但它们的实际性能受限于所能产生的输出电压范围。这意味着当负载阻抗增加时,输出电流可能会降低,无法达到预期的效果。 #### 高电压双向恒流源设计 为了解决上述问题,Caldwell提出了一个改进的Howland电流泵拓扑结构,通过结合具有极宽输入共模范围的集成差分放大器和自举电源技术,使得电路能够承受更高的电源电压。这样,即使在较高的负载阻抗下,电路也能保持稳定的输出电流。 ##### 自举电源技术 自举电源技术是通过在电源电压与负载之间引入一个额外的反馈回路,从而提高电源的有效电压范围。这使得电路能够有效地驱动高阻抗负载,同时保持线性操作特性。 ##### 实际应用示例 为了验证这一设计的有效性,Caldwell构建了一个能够线性地向10kΩ负载提供和吸收10mA电流的双向恒流源。该演示电路采用了低成本且易于获取的组件,展示了Howland电流泵固有的优异线性和瞬态响应特性,而无需使用专门的高压集成电路。 #### 结果与性能评估 实验结果表明,通过采用上述设计方案,电路不仅能够实现稳定的电流输出,而且在较高负载阻抗的情况下也表现出良好的线性度和快速的响应时间。此外,由于没有使用专用的高压集成电路,这种设计还具有成本效益的优势。 #### 结论 通过将集成差分放大器与自举电源技术相结合,John Caldwell提出的高电压双向恒流源设计方案成功地克服了传统电路的局限性,实现了在较宽负载阻抗范围内稳定的电流输出。这种设计不仅适用于各种工业应用,而且由于其简单高效的特点,对于教学和研究领域同样具有重要意义。
2025-12-24 22:51:35 5.87MB
1
随着电子技术的深入发展,各种智能仪器越来越多,涉及领域越来越广,而仪器对电源的要求也越来越高。现今,电源设备有朝着数字化方向发展的趋势。然而绝大多数数控电源设计是通过高位数的A/D 和D/A芯片来实现的,这虽然能获得较高的精度,但也使得成本大为增加。本文介绍一种基于AVR单片机PWM功能的低成本高精度数控恒流源,能够精确实现0~2A恒流。
1
### 三端可调恒流源LM334及其应用 #### 重要知识点解析: **1. LM334概述:** - **定义:**LM334是一款由美国国家半导体公司生产的三端可调恒流源器件,具备优秀的电流稳定性及宽泛的工作电压范围。 - **特性:**其电流比值调节范围广泛,动态电压范围大,仅需单个外部电阻即可设定所需电流,无需独立电源供电,能够承受反向电压,适合作为温度传感器使用。 - **应用领域:**包括低功率恒流参考源、偏置网络、锯齿波发生器、电涌保护、驱动和温度传感等。 **2. 恒流源原理与特性:** - **恒流特性:**在设定条件下,LM334能保持输出电流的稳定,不受负载变化的影响。 - **温度敏感性:**LM334具有与绝对温度成正比的敏感电压特性,这使得它能够作为温度传感器使用,尤其适用于远程温度测量,长线的串接电阻不会影响测量精度。 - **零温度漂移电路:**通过外接一只电阻和二极管,可以构建出零温度漂移的恒流源,从而实现更精确的温度补偿。 - **工作温度范围:**LM334系列器件的工作温度范围广泛,从-55℃至+150℃,适应不同环境条件下的应用需求。 **3. 应用实例——快速电阻测量:** - **传统方法局限:**普通数字万用表采用双积分式A/D转换器进行电阻测量,虽然具有高分辨率和强抗干扰能力,但转换速度较慢,不适合生产线上的大批量阻性元件测量。 - **改进方案:**利用LM334构建的快速电阻测量电路,能够显著提升测量速度,满足生产线效率要求。 - **电路原理:**在基本恒流源电路基础上,增加电阻和二极管形成零温度系数的恒流源,结合高速A/D转换技术,实现快速准确的电阻测量。 #### 详细解释: **1. LM334的关键优势:** - **宽工作电压范围:**LM334能够在较低至较高的电压范围内稳定工作,这意味着它能够适应多种不同的电源条件。 - **电流可调性:**通过调整外部电阻,可以轻松设定输出电流的大小,这一特性极大地扩展了它的应用范围。 - **温度补偿功能:**由于LM334具有温度敏感特性,通过适当的设计,可以构建出温度补偿电路,这对于需要精确控制温度的应用场合非常重要。 **2. 构建零温度漂移电路的方法:** - **理论基础:**LM334自身的电流会随温度变化,而硅二极管的正向偏压具有相反的温度系数。通过匹配这两个元件的温度特性,可以实现温度漂移的相互抵消。 - **电路设计:**在基本电路中加入额外的电阻和二极管,调整其参数,直到整个电路的温度系数接近零,从而实现零温度漂移的效果。 **3. 快速电阻测量技术的重要性:** - **提高生产效率:**在电子制造领域,生产线上的测试环节往往成为瓶颈。通过采用快速电阻测量技术,可以大幅提升测量速度,从而提高整体生产效率。 - **确保产品质量:**快速准确的测量不仅能够加速生产流程,还能确保每个元件的电气特性符合标准,保障最终产品的质量。 LM334三端可调恒流源凭借其独特的性能特点,在多种应用领域展现出卓越的表现。尤其是在构建高效、精确的测量系统方面,通过合理设计电路,可以充分发挥其优势,满足工业自动化和精密测量的需求。
2025-11-20 23:58:06 150KB 中文资料
1
在电子工程领域,运放(运算放大器)恒流源电路是一种常见的设计,它能够提供一个稳定的电流输出,无论负载阻抗如何变化。这个电路在众多应用中扮演着重要角色,比如模拟电路、电源管理、传感器接口以及精密测量设备等。下面我们将详细探讨运放恒流源的工作原理、设计要点及其实现方法。 一、运放恒流源工作原理 运放恒流源的基本原理是利用运放的负反馈特性,使其输出电压与输入电压保持一定比例,从而确保流过某个电阻的电流恒定。当负载阻抗变化时,运放会自动调整其输出电压,以维持通过负载的电流不变。典型的运放恒流源电路通常包括一个偏置电阻、一个反馈电阻以及一个负载电阻。 二、电路构成 1. 偏置电阻:为运放提供合适的偏置电压,确保其工作在线性区。 2. 反馈电阻:连接在运放的输出和反相输入端,形成负反馈网络,用于控制输出电流。 3. 负载电阻:实际需要恒定电流流过的电阻或负载。 三、设计要点 1. 选择合适的运放:运放应具有高开环增益、低输入偏置电流、低输入失调电压和低噪声等特性,以确保电流源的精度和稳定性。 2. 偏置电压:偏置电压必须保证运放在线性工作区间,一般由电源电压和偏置电阻决定。 3. 反馈电阻和负载电阻的选择:根据所需恒定电流I,反馈电阻Rf与负载电阻RL之间的关系为I = Vcc / (Rf + RL),其中Vcc是运放的电源电压。 四、实现方法 常见的运放恒流源电路有以下几种形式: 1. 单电阻恒流源:仅用一个反馈电阻,简单但精度较低。 2. 差分对恒流源:使用两个运放和两个反馈电阻,提高电流源的精度和稳定性。 3. 带隙基准源恒流源:结合带隙基准电压源,提供温度补偿,实现更精确的电流源。 五、应用实例 在制造过程中,运放恒流源常用于测试设备,如测试晶体管的电流特性,或者在生产线上用于检测元器件的电流一致性。此外,它们还在传感器读出电路、电池充电器、电流驱动LED等领域广泛应用。 总结,运放恒流源电路是电子设计中的基础组成部分,通过巧妙地利用运放的负反馈特性,实现电流的稳定输出。理解和掌握运放恒流源的工作原理和设计方法,对于电子工程师来说至关重要,能够帮助他们在各种应用场景中灵活运用。
2025-11-14 08:43:20 25KB
1
### 运放与三极管组成的恒流源详解 #### 一、电路概述 本章节主要探讨一种由运算放大器(简称运放)与双极性晶体管(BJT)构成的电压到电流(V-I)转换器电路,用于实现恒流源功能。这种电路能够向负载提供一个稳定且受控的电流,即使负载电压超过运放供电电压的情况下也能正常工作。 #### 二、设计目标与参数 - **输入电压范围**:0V 至 10V。 - **最大输入电流**:200μA。 - **最小输出电流**:0A。 - **最大输出电流**:1A。 - **电源电压**:Vcc = 15V,Vee = 0V。 - **负载电压**:Vload = 36V。 #### 三、电路结构与工作原理 该电路的核心在于利用了运放的负反馈特性与BJT的电流放大能力。具体来说: 1. **电阻分压网络**(R1 和 R2):用于限制非反相输入端的最大电压,确保在满量程时传感器电阻 R5 的电压不会过高。 2. **传感器电阻**(R5):低侧电流检测电阻,用于反馈负载电流的变化情况。 3. **补偿元件**(R3、R4 和 C1):这些元件共同作用于确保电路稳定性。其中,R3 隔离 BJT 的输入电容;R4 提供直流反馈路径,直接连接到电流设置电阻 R5;C1 提供高频反馈路径,绕过 BJT。 4. **高增益 BJT**(T1):采用高增益 BJT 减少运放的输出电流需求,提高效率。 #### 四、关键组件分析 1. **运算放大器(Op Amp)**: - 选用型号为 TLV9102,具有良好的线性度及宽频带特性。 - 在本电路中,运放工作在线性区域,确保输出电流的准确性和稳定性。 - 非反相输入端通过电阻分压网络接到参考电压,反相输入端通过负反馈网络连接到传感器电阻 R5。 2. **双极性晶体管(BJT)**(T1): - 选用型号为 2N5686,具有较高的电流增益(hFE),从而降低对运放输出电流的需求。 - 其基极通过 R3 连接至运放的反相输入端,集电极通过负载电阻连接至 Vcc,发射极通过传感器电阻 R5 接地。 3. **传感器电阻**(R5): - 选择较低阻值(例如 100mΩ),以减小功率损耗并增加负载电压的合规范围。 - R5 上的电压变化会直接反映负载电流的变化,通过运放的负反馈控制电路实现稳定的电流输出。 4. **补偿元件**(R3、R4 和 C1): - R3 和 R4 构成的分压网络为 BJT 提供适当的基极电压,同时保证电路稳定性。 - C1 起到高频补偿作用,有助于提高整个系统的稳定性。 #### 五、设计步骤 1. **计算传感器电阻 R5**:为了最大化负载合规电压,并减少满量程时的功率损耗,应尽可能选择较小阻值的 R5。 2. **确定运放的负反馈网络**:通过调整 R3 和 R4 的阻值来优化闭环增益,确保电路在不同负载条件下的稳定性。 3. **选择合适的 BJT**:根据电路所需的电流放大倍数选择合适的 BJT 型号,以满足设计要求。 4. **补偿电路设计**:根据运放的具体型号及其数据手册中的建议,合理设计 R3、R4 和 C1 的值,确保整个电路的稳定性。 5. **测试与调试**:完成电路设计后,进行实际测试,根据测试结果调整电路参数,直至满足设计目标。 #### 六、总结 通过上述分析可以看出,运放与 BJT 组成的恒流源电路是一种简单有效的解决方案,能够在较宽的输入电压范围内实现精确的电流输出。通过合理选择元器件和精心设计电路结构,可以有效提高电路性能,满足不同应用场合的需求。
2025-10-08 17:28:32 547KB
1
恒流源电路是一种重要的电子电路,它能保持输出电流的恒定,不随负载或电源电压的变化而变化。这种特性在许多电子设备中都极为关键,例如在模拟电路设计、LED驱动器、电源管理以及传感器等领域都有广泛应用。下面将详细阐述恒流源的工作原理和几种常见的实现方式。 基本电流镜结构是恒流源的基础,它基于电流复制的原理。当两个工艺参数相同的MOSFET(金属-氧化物-半导体场效应晶体管)在饱和区工作时,如果它们的栅源电压相同,那么它们的漏极电流也会相等。然而,由于沟道调制效应,当漏源电压VDS不一致时,即使栅源电压相同,电流也会不同。为了克服这个问题,可以通过调整MOSFET的宽长比来设计出与参考电流成比例的输出电流,这就是比例电流镜的工作原理。但这种方法无法提供真正的恒流源,因为VDS2的变化会影响输出电流Io。 为了改善电流镜的恒流特性,通常有两种方法:一是尽量减少或消除M2的沟道调制效应,可以通过增加M2的沟道长度来提高输出阻抗;二是设置VDS2等于VDS1,使得Io只与M1和M2的宽长比有关,从而实现更好的恒流特性。在实际应用中,尤其是在小特征尺寸的CMOS工艺中,通常会采用第二种方法来设计恒流源电路。 威尔逊电流源是另一种改进的恒流源结构,它利用负反馈来提高输出阻抗,以增强恒流特性。在这个电路中,通过M3形成负反馈,使得VDS1>VGS1,保证M1始终工作在饱和区。由于VDS2和VDS1之间的关系,输出电流Io与参考电流IR不仅与M1、M2的尺寸有关,还取决于VGS2和VGS3的值。通过交流小信号等效电路分析,可以计算出电路的输出阻抗,进一步优化恒流特性。威尔逊电流源的优点是只需要三个MOS管,结构相对简洁,同时适用于亚阈值区。 然而,即使是威尔逊电流源,其M3和M2的漏源电压仍然不相等,因此有一种改进型的威尔逊电流源,引入了二极管连接的MOS管M4。通过设定VGS3=VGS4,可以使VDS1=VDS2,从而消除沟道调制效应,提高恒流精度。这种结构只需要四个MOS管,适合于对精度要求较高的应用。 共源共栅电流源是一种高输出阻抗的恒流源,其特点是使用共源共栅结构来确保VDS2=VDS1,从而改善恒流特性。通过适当选择M3和M4的尺寸,使得VGS3=VGS4,这样整个电路就能实现恒定的输出电流。这种结构在需要高精度和高输出阻抗的场合非常有用。 总结起来,恒流源电路的设计和优化是一个复杂的过程,涉及到MOSFET的沟道调制效应、负反馈机制以及电路的尺寸匹配。通过这些方法,我们可以设计出各种具有不同特性的恒流源,以满足不同应用场景的需求。
2025-10-08 17:07:27 503KB 恒流源电路
1
配低阻电阻传感器的惠斯登电桥, 若采用直流电压源激励, 则由于极化作用和传感器的热电效应的影响, 电桥输出信号将有误差。而且, 用于电桥的直流信号放大器必须克服像偏 移电压、漂移和泄漏电流等问题。本文介绍一种利用双向恒流方波源激励电桥的新方法。 惠斯登电桥是一种常用的测量电路,主要用于检测电阻的变化,如在应变片传感器中。在传统的惠斯登电桥中,通常采用直流电压源作为激励,然而这种方法存在一些问题。当电桥连接低阻传感器时,直流电压激励可能会导致极化作用,使传感器产生热电效应,从而影响电桥的输出信号,产生误差。此外,直流信号放大器在处理电桥输出时需要克服偏移电压、漂移和泄漏电流等问题。 为了解决这些问题,文章提出了采用双向恒流源供电的新方法。双向恒流源可以提供稳定且方向可变的电流,这种电流源本身具有短路保护功能,非常适合用于低阻电桥。由于电流是恒定的,不会因为极化或热电效应产生额外的寄生电压,从而降低了误差。同时,这种电源的双向特性有助于消除与直流放大器相关的偏移电压、漂移和泄漏电流等问题。 具体实现中,电桥激励由一个方波发生器(放大器−∀)生成,其输出通过背靠背齐纳二极管限制在饱和电平以下。振荡频率可以通过公式设定,文中给出的频率大约为千赫兹左右。方波电压源通过二极管桥和沟道场效应管转换成双向电流源,调整电阻器的值来设定场效应管的漏极电流,通常是微安级别。应变片电桥作为负载,接收这种双向激励电流,其差分输出信号通过单端差分放大器(−.)进行放大。 为了隔绝电桥因热电效应产生的直流电势,采用了电容隔离。接下来的线路使用放大器−.进行精密半波解调,二极管在反馈回路中,其非线性、温度敏感度和正向电压降都得到了降低。解调后的输出通过低通滤波器滤波后送至显示器。在无应变状态下,调整电阻器2+.的值,使得输出读数为零。 采用恒流源激励的一大优势在于,即使电源的任意两个输出端子之间出现短路,系统也能恢复正常工作,这对于远程传感器应用尤其重要,例如在结构挠曲测量中使用应变仪。通过选择适当的引线和元件,可以减少寄生电容和电感引起的误差,提高测量精度。 这种双向恒流源供电的惠斯登电桥方案提升了测量的准确性和稳定性,特别适合低阻传感器的应用,并且能够有效应对各种电气干扰,确保了测量结果的可靠性。
2025-06-13 03:18:00 85KB
1
中的“基于51单片机数控可调恒流源设计”是一个涉及电子工程领域的项目,主要探讨如何利用51系列单片机来实现一个数字控制、电流可调的恒流源。51单片机是微控制器的一种,具有成本低、应用广泛的特点,常用于嵌入式系统的设计。在本项目中,51单片机作为核心控制器,通过接收和处理数字信号来调整输出电流的大小,以满足不同应用场景的需求。 中提到的“实物图+原理图+PCB+论文”是该项目的组成部分,具体如下: 1. **实物图**:实物图展示了完成的硬件设计,包括单片机、外围电路以及可能的显示设备等,帮助理解和验证设计的实物形态和工作状态。 2. **原理图**:原理图是电路设计的基础,它详细描绘了各个电子元件的连接方式,包括51单片机、电流调节元器件、A/D和D/A转换器、电源模块以及用户接口等。通过原理图,我们可以理解整个系统的运作机制。 3. **PCB**:PCB(Printed Circuit Board)即印制电路板,是将原理图转化为实际电路的关键步骤。PCB设计包括元件布局和布线,确保电路的电气性能和物理结构的合理性。在本项目中,PCB图会展示所有元件的精确位置和连接方式。 4. **论文**:论文通常包含项目的背景、设计目标、系统架构、工作原理、实现方法、实验结果和分析等,是对整个设计的详细阐述和理论支撑。通过论文,我们可以深入理解设计思路和技术细节,以及项目的意义和价值。 在51单片机数控可调恒流源的设计中,关键知识点包括: 1. **51单片机编程**:使用汇编语言或C语言编写控制程序,实现对电流的数字化控制。 2. **AD和DA转换**:A/D转换器将模拟信号转换为数字信号,让单片机可以处理;D/A转换器则将数字信号转换为模拟信号,控制输出电流的大小。 3. **恒流源电路设计**:可能包括运算放大器、晶体管等元器件,以实现稳定的电流输出,不受负载变化的影响。 4. **用户交互界面**:如LED显示或LCD显示屏,用于显示当前电流值,以及可能的按键输入,允许用户设定电流。 5. **误差校正和控制算法**:通过PID或其他控制算法,确保电流输出的精度和稳定性。 整体来看,这个项目涵盖了单片机编程、数字电路、模拟电路、嵌入式系统设计等多个方面的知识,对于学习和提升电子工程技能具有很高的实践价值。
2025-05-23 23:18:12 16.49MB
1
"TI-TPS63020 恒流源设计方案" TI-TPS63020 恒流源设计方案是基于 Texas Instruments 公司的 TPS63020 芯片设计的一种恒流源解决方案。该方案主要应用于输出恒压恒流变换器设计,例如 Power Bank 等应用中,对输出特性有过流时恒流保护的要求。 应用背景 输出恒压恒流变换器是指可以提供恒定电压和恒定电流输出的设备,常用于 Power Bank、电池充电器、LED 驱动器等应用中。在这些应用中,对输出特性有过流时恒流保护的要求,以防止设备损坏或电池过充电。 TPS63020 简介 TPS63020 是一款高性能的恒流源芯片,能够提供高精度的电流控制和电压稳定输出。该芯片具有低 dropout 电压、低噪音和高效率等特点,非常适合输出恒压恒流变换器设计。 单运放恒流电路方案 该方案采用单运放方案实现电流采样信号的放大和补偿。该方案中,TPS63020 芯片作为恒流源,输出恒定电流,通过单运放进行电流采样信号的放大和补偿,然后将输出电流反馈到 TPS63020 芯片中,形成一个闭环反馈系统,以确保输出电流的稳定性。 原理图设计 该方案的原理图设计主要包括 TPS63020 芯片、单运放电路和反馈电路等部分。TPS63020 芯片作为恒流源,提供恒定电流输出。单运放电路用于电流采样信号的放大和补偿。反馈电路将输出电流反馈到 TPS63020 芯片中,以确保输出电流的稳定性。 测试结果 该方案的测试结果表明,该方案能够提供高精度的电流控制和电压稳定输出。测试结果显示,在不同的输出电流下,该方案能够提供稳定的电流输出,且电流精度高达 1%。 电路环路稳定性分析 电路环路稳定性是指输出恒压恒流变换器的稳定性,能够确保输出电流的稳定性。该方案的电路环路稳定性分析结果表明,该方案能够提供高稳定的输出电流输出。 结论 TI-TPS63020 恒流源设计方案是一种高性能的输出恒压恒流变换器设计方案,能够提供高精度的电流控制和电压稳定输出。该方案非常适合 Power Bank 等应用中,对输出特性有过流时恒流保护的要求。
2025-04-16 11:08:09 768KB
1
恒流源电路详解】 恒流源是一种能够保持输出电流恒定,不随负载或电源电压变化而改变的电路。在电子设计中,恒流源广泛应用于LED驱动、传感器供电、精密电流基准等方面,其稳定性和精度对于系统性能至关重要。本篇文章将详细探讨一种由运算放大器(运放)和MOSFET组成的恒流源电路,以及其工作原理和应用。 一、电路组成 运放+MOSFET的恒流源电路通常由以下几个部分构成: 1. 运算放大器:运放作为反馈控制的核心元件,能够比较输入电压并调整输出,以实现电流的精确控制。 2. MOSFET:MOSFET(金属氧化物半导体场效应晶体管)用作电流控制开关,其栅极电压决定了漏极电流的大小。 3. 反馈电阻:连接在MOSFET的源极和运放的反相输入端,用于将输出电流转换为电压,提供反馈信号。 4. 参考电压源:提供一个稳定的电压,与反馈电压进行比较,决定MOSFET的栅极电压。 二、工作原理 1. 当MOSFET的栅极电压高于源极电压时,MOSFET导通,漏极电流ID与VGS(栅极-源极电压)和沟道电阻RDS(on)成正比,即ID = K * (VGS - VTH) * sqrt(VDS),其中K是沟道常数,VTH是阈值电压,VDS是漏极-源极电压。 2. 运放工作在负反馈状态,其反相输入端(通过反馈电阻)的电压与同相输入端(参考电压源)的电压保持一致。因此,当漏极电流增大时,反馈电压也增大,运放将降低其输出电压,减小MOSFET的栅极电压,从而限制漏极电流的增加。 3. 相反,如果漏极电流减小,运放的输出电压上升,增加MOSFET的栅极电压,漏极电流也随之增加,形成闭环控制,确保电流恒定。 三、设计要点 1. 选择合适的运放:运放应具有低输入偏置电流、高开环增益和足够高的带宽,以确保电流控制的精度和快速响应。 2. MOSFET的选择:MOSFET应具有低阈值电压和低RDS(on),以减少静态功耗和提高电流控制的线性度。 3. 反馈电阻的计算:反馈电阻值Rf需根据所需恒定电流Iset和参考电压Vref来确定,Rf = Vref / Iset。 4. 静态偏置:通常需要一个偏置电阻Rbias来设置MOSFET的初始栅极电压,确保在电源启动时MOSFET处于导通状态。 四、应用实例 这种恒流源电路在LED驱动电路中非常常见,因为LED的亮度与其电流直接相关。通过调整电路参数,可以确保每个LED都获得恒定的电流,从而保持亮度一致。此外,它还可用于精密测量设备中的电流源,提供稳定可靠的电流基准。 总结,运放+MOSFET的恒流源电路通过负反馈机制实现了电流的精确控制。理解其工作原理和设计要点对于电子工程师来说至关重要,可以为各种应用场景提供稳定、可调节的电流源。深入研究"Voltage-to-current (V-I) converter circuit with MOSFET.pdf"文档,将有助于进一步掌握此类电路的设计与优化。
2024-10-17 15:18:39 445KB
1