基于Visual Transformer的年龄估计 尝试Visual Transformer的有趣项目,花了几天时间。 自动化的年龄和性别估算在许多应用中变得至关重要。 有多种方法可以根据人的声音,面部特征和姿势来预测年龄和性别。 在本文中,将研究基于图像的方法。 该方法需要人脸的二维图像。 这种方法的挑战性问题是,在不受限制的环境中对脸部进行实验时,其性能会大大降低。 另一个问题是基于个人生活方式,遗传和环境的老龄化差异。 简单地说,不同的人年龄不同。 另一个挑战是生物年龄和表观年龄之间的区别。 基于面部图像的方法有两种。 第一个是手工进行的特征提取和分类,第二个使用深度神经网络。 在我们的论文中,我们还提出了用于年龄估计的视觉转换器。 它是最早提出用于面部任务的视觉转换器之一,因此没有预训练的模型。 但是,我们仍然设法在低数据环境中取得一些成果。 未来的步骤将是在较大的面部数据集上对
2023-02-23 20:48:42 250KB JupyterNotebook
1
模式识别中简单的男女性别分类,其中有最小风险贝叶斯分类、基于parzen窗的贝叶斯分类等方法。
2023-01-03 20:19:23 824KB 性别分类
1
1、代码包含resnet系列网络源码,如resnet18、resnet34、resnet50、resnet101等。 2、代码中已训练好的模型是基于resnet18,模型是cpu训练 3、使用的深度学习框架为pytorch,建议版本为1.7以上 4、资源附有训练使用的男女人脸图片数据集,已划分为训练集与验证集 5、训练模型较好,精度很高,不仅可以训练,还可以预测,预测结果以弹窗形式展示,演示效果好! 【备注】该代码模型适合深度学习初学者入门、代码简单易懂,结构清晰,单个py文件调试也方便。有很好的借鉴学习价值!
卷积神经网络 表情和性别分类 CNN for Emotion and Gender Classification
2022-11-15 21:30:56 958KB CNN 人工智能 机器学习 分类算法
1
高音数据集对性别分类的自然语言处理NLP 借助自然语言处理NLP,我可以从Tweeter数据集中识别性别分类 该文件包含: 加载数据集: 该数据集用于训练CrowdFlower AI性别预测器。 您可以在此处阅读有关该项目的所有信息。 要求参与者仅查看Twitter的个人资料并判断用户是男性,女性还是品牌(非个人)。 数据集包含20,000行,每个行都有一个用户名,一条随机鸣叫,帐户个人资料和图像,位置,甚至是链接和侧边栏颜色。 数据集来自这里: : 灵感 您可以尝试使用此数据集回答以下几个问题: 推文和个人资料中的单词如何预测用户的性别? 用什么词可以强烈预测男性或女性性别? 风格因素(例如链接颜色和侧边栏颜色)如何很好地预测用户的性别? 数据 数据集包含以下字段: unitid:用户的唯一ID _golden:模型的黄金标准中是否包含用户; 对或错 unitsta
2022-11-11 19:02:20 3.03MB JupyterNotebook
1
看我如何利用贝叶斯分类器实现基于身高的性别分类代码全.doc看我如何利用贝叶斯分类器实现基于身高的性别分类代码全.doc看我如何利用贝叶斯分类器实现基于身高的性别分类代码全.doc
1
1引言信息技术的发展 日新月异,极大地推动了人机交互技术的前进,使得计算机视觉在计算机识别与监控中发挥越来越重要的作用,出现了人脸检测、人脸识别、人脸跟踪、年龄
2022-08-04 09:00:11 216KB 支持向量机
1
本项目是自然语言处理文本分类的一个实例---姓名性别分类。里面包含了原始数据,源代码,详细注释,可以通过有监督的学习通过读入数据,定义特征分类器,训练一个新的“朴素贝叶斯”分类器进行男女姓名的分类。具体可以实现中文名字与外文名字的分类。
2022-02-11 11:54:30 20KB 自然语言处理 姓名性别分类
1
人工智能与模式识别作业2:利用贝叶斯分类器实现基于身高的性别分类
2022-01-02 14:27:16 152KB python
1
采用系统默认的模式dbo,创建名为DBTestBed的数据库;
2021-12-28 19:39:45 309KB 模式识别 身高 体重 性别
1