针对在医学卫生领域,疾病受到许多因素的影响,很难用结构式的因果模型加以解释的问题,根据神经网络来预测是一种行之有效的方法。径向基函数(RBF)神经网络应用于疾病的月发病人数预测时,由于影响它的气象因素:月平均气压,月平均气温,月平均相对湿度,月平均风速,月平均降水量本身具有很大的相关性,且维数较高,RBF神经网络的预测精度会下降,针对这一问题,文中提出了利用主成分分析(PCA)方法对原输入空间进行重构,并根据各主成分的贡献率来确定网络结构,从而有效的解决了预测精度下降的问题。最后以2001年8月至2006年9月张家川支气管肺炎月发病人数的资料验证该方法的有效性。至此,应该充分考虑人在各时间段的发病特征,以便更有重点地进行健康防治工作,有效地降低支气管肺炎对人类的危害,保障人类的生活品质。
1
用于预测,极限学习机Matlab程序,能直接运行,适合学习,。。。。。。。
2021-09-28 19:01:50 173KB 极限学习机 径向基神经网络预测
为解决建筑物基础沉降量的安全监测问题,对其进行有效的预测、校核与分析,运用MATLAB软件建立径向基神经网络模型对某市建筑物的基础沉降量进行预测.结果表明:径向基神经网络的结构形式简易,适应能力更强,预测误差比BP网络小,平均约为66.83%,达到预测精准度所需的耗时短、收敛速度更快.径向基神经网络的预测结果与实测结果较为吻合,表明径向基神经网络预测模型适用于建筑工程沉降预测领域之中.
1