永磁同步电机最大转矩电流比(MTPA)控制+弱磁控制simulink仿真模型,相关原理分析及说明: 永磁同步电机MTPA与弱磁控制:https://blog.csdn.net/qq_28149763/article/details/136348643?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22136348643%22%2C%22source%22%3A%22qq_28149763%22%7D
2024-09-12 11:20:40 299KB 电机控制 simulink PMSM
1
STM32电机库5.4开源无感注释 KEIL工程文件 辅助理解ST库 寄存器设置AD TIM1 龙贝格+PLL 前馈控制 弱磁控制 foc的基本流 svpwm占空比计算方法 斜坡启动 死区补偿 有详细的注释, 当前是无传感器版本龙贝格观测,三电阻双AD采样!
2024-08-30 11:47:03 127KB stm32
1
永磁同步电机控制解析 涵盖模型建立、弱磁控制、MTPA、MTPF、转矩计算、谐波抑制、磁链辨识、谐振抑制、控制策略制定、滤波器设计、参数辨识等 可以参考。看完包会,绝对清晰
2023-11-17 10:35:02 21.46MB 永磁同步 弱磁控制 MTPA
PMSM同步电机的MTPA控制以及弱磁控制。
2023-07-07 09:47:20 46KB simulink MTPA f
1
PLL 类估算器 本应用笔记中使用的估算器就是 AN1162 《交流感应电 机 (ACIM)的无传感器磁场定向控制 (FOC) 》(见 “ 参考文献 ”)中采用的估算器,只是在本文中用于 PMSM 电机而已。 估算器采用 PLL 结构。其工作原理基于反电动势 (BEMF)的 d 分量在稳态运行模式中必须等于零。图 6 给出了估算器的框图。 如图 6 中的闭环控制回路所示,对转子的估算转速 (ω Restim)进行积分,以获取估算角度,如公式 1 所示: 将 BEMF 的 q 分量除以电压常量 ΚΦ 得到估算转速 ω Restim,如公式 2 所示: 考虑公式 2 中给出的最初估算假设(BEMF 的 d 轴值在 稳态下为零),根据 BEMF q 轴值 Edf 的符号,使用 BEMF d 轴值 Edf 对 BEMF q 轴值 Edf 进行校正。经过公 式 3 显示的 Park 变换后,使用一阶滤波器对 BEMF d-q 分量值进行滤波。 采用固定的定子坐标系,公式 4 代表定子电路公式。 在公式 4 中,包含 α – β 的项通过经 Clarke 变换的三相 系统的对应测量值得到。以 Y 型(星型)连接的定子相 为例, LS 和 RS 分别代表每个相的定子电感和电阻。若 电机采用 Δ 连接, 则应计算等效的 Y 型连接相电阻和电 感,并在上述公式中使用。 图 7 表示估算器的参考电路模型。电机的 A、 B 和 C 端 连接到逆变器的输出端。电压 VA、 VB 和 VC 代表施加 给电机定子绕组的相电压。 VAB、 VBC 和 VCA 代表逆变 器桥臂间的线电压,相电流为 IA、 IB 和 IC。
2023-04-09 11:26:38 334KB FOC 无感 Microchip
1
针对永磁同步电动机矢量控制中不能对定子电流d轴分量和q轴分量进行动态解耦的特点, 采用双PI动态解耦的方法, 避免了反馈解耦、对角矩阵解耦等方法中电机参数变化对解耦效果影响较大的问题, 以及逆系统方法、基于微分几何原理解耦方法的复杂性。由于逆变器的 饱和电压输出会导致电流的超调和振荡, 在动态解耦的基础上提出了一种电压抗饱和的设计方法, 并且通过进行补偿将双PI动态解耦控制和电压抗饱和设计有效地结合起来。仿真验证了这种动态解耦控制方法的有效性。
2023-03-21 10:01:08 666KB 弱磁
1
基于磁阻传感器HMC1002的弱磁信号采集系统设计、电子技术,开发板制作交流
1
基于矢量控制的永磁同步电机控制;通过Simulink模块搭载仿真,实现电机的全速域调速
2022-11-08 16:03:59 31KB mtpa svpwm 域控制 弱磁控制
1
三相异步电机的调速特性分析,弱磁调速,变频调速,降压调速。记得要改仿真路径!
2022-11-07 13:32:13 25KB flex 异步电机调速 弱磁 弱磁调速
1
基于给定转矩和电角频率的反馈进行二维查表获得dq轴电流的给定,实现PMSM力矩的控制
2022-11-06 13:12:59 111KB PMSM MTPA 弱磁 simulink
1