1.7 ABZ相差动输出线性编码器 要点 使用ABZ相差动输出的线性编码器时,请使用MR-J4-(DU)_A_-RJ或MR-J4-(DU)_B_ -RJ。 这里对ABZ相差动输出线性编码器的连接进行说明。编码器电缆使用MR-J3CN2连接器组件,并请按照本节(3) 的接线图进行制作。 (1) ABZ相差动输出线性编码器的规格 线性编码器的A相、B相和Z相的信号为差动线驱动器输出。无法使用集电极开路输出。 A相脉冲和B相脉冲的相位差需要200 ns以上的幅度,Z相脉冲幅度需要200 ns以上的幅度。 ABZ相差动输出线性编码器的A相脉冲和B相脉冲的输出脉冲为4倍增。 没有Z相的线性编码器无法进行原点复位。 容许分辨率范围为0.001 µm ~ 5 µm。请选择在此范围内的线性编码器。 LA LAR LB LBR LZ LZR 编码器 相当于Am26LS31 LAR,LBR,LZR LA,LB,LZ 相位差200 ns以上 Z相的1脉冲=200 ns以上 (2) 伺服放大器与ABZ相差动输出线性编码器的连接 连接器组件 MR-J3CN2(选件) ABZ相差动输出线性编码器 伺服放大器 CN2L CN2 线性伺服电机的热敏电阻
2025-09-23 11:53:53 689KB 伺服控制器
1
其中包括:嵌入式AI---yolov8模型转化为华为昇腾om模型教程文件和相关的代码文件 执行YOLOv8模型的图片视频推理代码 执行YOLOv5模型的图片视频推理代码 示例YOLOv8的.om模型 相关执行结果
2025-09-22 22:14:09 423.43MB 课程资源
1
### DE2开发板原理图解析 #### 一、概述 DE2开发板是基于FPGA技术的一款多功能开发平台,广泛应用于教学与项目开发之中。本文将深入解析DE2开发板的原理图,主要包括音频处理部分及LCD显示和LED控制电路的设计细节。 #### 二、音频处理部分 ##### 1. 音频接口 - **I2C_SCLK**:I²C串行时钟线,用于同步数据传输。 - **I2C_SDAT**:I²C串行数据线,用于双向数据传输。 - **AUD_BCLK**:音频比特时钟信号,用于同步数据采样。 - **AUD_DACDAT**:DAC(数字模拟转换器)数据输入线。 - **AUD_ADCLRCK**:ADC(模拟数字转换器)采样时钟信号。 - **AUD_DACLRCK**:DAC左/右时钟信号。 - **AUD_ADCDAT**:ADC数据输出线。 - **AUD_XCK**:外部时钟信号,用于同步内部时钟。 这些信号主要用于与音频编解码器进行通信,实现声音的输入与输出。 ##### 2. WM8731 音频编解码器 - **U1 WM8731 QFN28-0.45**:该芯片是一款高性能立体声编解码器,采用28引脚QFN封装。 - **BCLK 7**:比特时钟输入。 - **HPVDD 12**:耳机放大器电源输入。 - **XTO 2**:外部晶体振荡器连接。 - **DCVDD 3**:数字电源输入。 - **MBIAS 21**:麦克风偏置电压输出。 - **MICIN 22**:麦克风信号输入。 - **RLINEIN 23**:右声道线路输入。 - **LLINEIN 24**:左声道线路输入。 - **MODE 25**:模式选择输入。 - **CSB 26**:芯片选择信号输入。 - **SDIN 27**:串行数据输入。 - **SCLK 28**:串行时钟输入。 - **ROUT 17**:右声道输出。 - **AVDD 18**:模拟电源输入。 - **AGND 19**:模拟地。 - **VMID 20**:中间电压输出。 - **LOUT 16**:左声道输出。 - **HPGND 15**:耳机接地。 - **RHPOUT 14**:右声道耳机输出。 - **LHPOUT 13**:左声道耳机输出。 - **MCLK 1**:主时钟输入。 - **DGND 4**:数字地。 - **ADCLRCK 11**:ADC时钟输入。 - **ADCDAT 10**:ADC数据输出。 - **DBVDD 5**:数字电源输入。 - **CLKO 6**:时钟输出。 - **DACDAT 8**:DAC数据输入。 - **DACLRCK 9**:DAC时钟输入。 通过这些引脚,WM8731可以实现高质量的音频输入输出功能,并支持多种采样率和位深度设置。 ##### 3. 音频接口电路 - **R11 47K**:电阻,用于分压或限流。 - **R4 4.7K**:电阻,用于分压或限流。 - **BC3 0.1uF**:旁路电容,用于滤除高频噪声。 - **R2 2K**:电阻,用于分压或限流。 - **C1 1uF**:耦合电容,用于隔直通交。 - **BC1 0.1uF**:旁路电容,用于滤除高频噪声。 - **C5 1000pF**:去耦电容,用于滤波。 - **R10 47K**:电阻,用于分压或限流。 - **R1 4.7K**:电阻,用于分压或限流。 - **R9 47K**:电阻,用于分压或限流。 - **R6 4.7K**:电阻,用于分压或限流。 - **R3 2K**:电阻,用于分压或限流。 - **TC2 100uF/6.3V C-1210+**:电解电容,用于滤波和平滑直流电压。 - **C2 1uF**:耦合电容,用于隔直通交。 - **BC4 0.1uF**:旁路电容,用于滤除高频噪声。 - **C3 1uF**:耦合电容,用于隔直通交。 - **R5 4.7K**:电阻,用于分压或限流。 - **R8 680Ω**:电阻,用于分压或限流。 - **TC1 100uF/6.3V C-1210+**:电解电容,用于滤波和平滑直流电压。 这些元件共同构成了音频接口电路的一部分,用于滤波、保护和匹配等作用。 ##### 4. I²C总线配置 - **I2C_ADDRESS_READ IS 0x34**:读操作时的I²C地址。 - **I2C_ADDRESS_WRITE IS 0x35**:写操作时的I²C地址。 这些地址用于在I²C总线上与WM8731进行通信,控制其工作模式和参数设置。 #### 三、LCD显示和LED控制电路 ##### 1. LCD显示接口 - **LCD_D[0..7]**:LCD数据线,用于发送显示数据。 - **LCD_EN**:使能信号,用于控制数据的有效性。 - **LCD_RS**:寄存器选择信号,用于区分指令和数据。 - **LCD_WR**:写信号,用于控制数据写入。 - **LCD_ON**:打开/关闭LCD的信号。 - **LCD_BLON**:背光控制信号,用于控制LCD背光开启或关闭。 - **LCD_VCC**:电源输入。 - **LCD_BL**:背光电压输入。 这些信号构成了LCD显示模块的基本控制接口,用于向LCD发送显示指令和数据。 ##### 2. LED控制电路 - **LED[0..26]**:LED控制信号,用于控制27个LED的状态。 - **VCC5**:5V电源输入。 - **VCC43**:4.3V电源输入。 这部分电路用于控制开发板上的多个LED灯,实现不同的指示功能。 #### 四、总结 通过对DE2开发板原理图的详细分析,我们可以清晰地了解到其音频处理部分采用了高性能的WM8731音频编解码器,支持高质量的音频输入输出功能;同时,开发板还配备了LCD显示模块和丰富的LED控制电路,为用户提供更加全面的功能支持。这些设计不仅满足了教学和实验的需求,也为进一步的项目开发提供了坚实的基础。
2025-09-22 10:21:20 177KB FPGA
1
根据提供的信息,我们可以详细解析DE2开发板的相关知识点,包括其结构、主要组件及功能等。 ### DE2开发板概述 DE2开发板是由ALATER(可能是笔误,实际应为Altera)公司生产的原版开发板。此开发板基于Altera公司的Cyclone II系列FPGA(Field Programmable Gate Array,现场可编程门阵列),主要用于教学和研发领域。它集成了多种外设接口,可以支持多媒体处理、网络通信等多种应用。 ### 原理图解析 #### 1. 封面页(COVERPAGE) 封面页提供了关于该文档的基本信息,包括标题、文档大小、文档编号、修订版本、日期等。这有助于使用者快速了解文档的关键信息。 #### 2. 原理图(TOP) - **音频部分(AUDIO)** - **WM8731**:这是一款高性能立体声音频编解码器,支持多种数字音频格式,用于处理输入输出音频信号。 - **显示部分(DISPLAY)** - **LCD**:液晶显示屏,用于显示文本或图像信息。 - **LED**:发光二极管,用于状态指示。 - **7段显示**:通常用于显示数字,便于用户读取相关信息。 - **FPGA核心部分(EP2C35)** - **EP2C35**:这是DE2开发板的核心器件,属于Cyclone II系列的FPGA芯片,具有多个Bank(块),负责处理逻辑运算。 - **电源管理**:提供必要的电压等级以支持FPGA和其他组件正常工作。 - **配置电路**:用于对FPGA进行编程和配置。 - **以太网接口(ETHERNET)** - **DM9000A**:集成以太网控制器,支持10/100Mbps自适应速率。 - **输入输出接口(IN/OUT)** - **时钟(CLOCK)**:提供系统所需的时钟信号。 - **PS2接口**:用于连接鼠标和键盘。 - **RS232接口**:标准串行通信接口,用于与PC或其他设备通信。 - **按键(KEY)**:用户交互控制。 - **开关(SWITCH)**:实现简单的逻辑控制。 - **连接器(CONNECT)**:用于连接外部设备。 - **内存(MEMORY)** - **SRAM**:静态随机存取存储器,用于高速缓存。 - **DRAM**:动态随机存取存储器,作为主存储器使用。 - **FLASH**:非易失性存储器,用于存储固件和数据。 - **SD卡**:扩展存储空间,支持多种文件系统。 - **电源(POWER)** - 提供稳定的电源供应,确保开发板各部分正常工作。 - **USB Blaster接口(USB BLASTER)** - 通过USB接口对FPGA进行编程和配置。 - **USB设备(USB DEVICE)** - 支持USB设备模式,可以模拟各种USB设备。 - **视频接口(VIDEO)** - **ADV7181**:视频解码器,支持多种视频输入格式。 - **ADV7123**:视频解码器,处理视频信号并转换为适合显示的格式。 ### 组件布局(PLACEMENT) DE2开发板的组件布局清晰地展示了各个组件的位置,便于设计者理解整体架构。其中包括: - **USB Blaster**:用于FPGA的编程和调试。 - **USB Device**:实现USB设备功能。 - **USB Host**:支持USB主机功能,可连接外部USB设备。 - **LCD Module**:液晶显示模块。 - **Line In/Out**:音频输入输出接口。 - **Mic In**:麦克风输入接口。 - **WM8731**:音频编解码器。 - **TV Decoder**:电视信号解码器。 - **VGA Output**:视频输出接口。 - **RJ45**:以太网接口。 - **PS2 Keyboard**:PS2键盘接口。 - **RS232**:串行通信接口。 - **DC 9V**:直流9伏电源输入。 - **SD Card**:SD卡插槽。 - **ADV7181/ADV7123**:视频解码器。 - **DM9000A**:以太网控制器。 - **M3128/EPCS16**:外部存储器。 - **EP2C35**:核心FPGA芯片。 - **Flash/SRAM/SDRAM**:不同类型的存储器。 - **GPIO_1/GPIO_0**:通用输入输出端口。 - **LEDs**:状态指示灯。 - **Keys**:用户可操作按键。 - **Hex Display**:十六进制显示器。 - **LEDG**:绿色LED灯。 - **IrDA**:红外数据传输接口。 - **EXTCLK**:外部时钟输入。 ### 总结 DE2开发板是一款高度集成的多功能开发平台,适用于教学实验和科研项目。通过分析其原理图,我们可以了解到开发板的主要组成部分及其功能。这些信息对于想要设计类似开发板或者利用DE2开发板进行项目开发的人来说非常有用。此外,通过学习DE2开发板的设计思路,还可以启发更多创新的应用场景和技术解决方案。
2025-09-22 10:20:51 371KB
1
Kintex 7 FPGA KC705 评估套件包括硬件、设计工具、IP 核和预验证参考设计等的所有基本组件,参考设计中包含能实现高性能、串行连接功能和高级存储器接口的目标设计。
2025-09-16 10:02:20 26.62MB fpga开发 网络协议
1
nRF54L15与nPM1300开发板是一款集成了高规格处理器和丰富外设接口的物联网开发板。它基于Nordic Semiconductor的nRF54L15微控制器单元(MCU),这是一款具有双核处理器的超低功耗蓝牙6.X物联网模块。开发板不仅支持最新的蓝牙技术,还能支持BLE、Matter、Thread和2.4GHz协议,使其在物联网领域具有广泛的应用场景。开发板配备了一个主处理器Arm Cortex-M33和一个RISC-V协处理器,处理器时钟频率高达128MHz,能够运行多种数据算法模型。 该开发板还具备强大的内存容量,拥有1.5MB的非易失性内存(NVM)和256KB的随机存取存储器(RAM),能够支持复杂的边缘计算需求。它的运行功率极低,功耗只有3.2mARX,同时在接收时能达到-104dBm的高灵敏度。其支持的4Mbps速率的射频部分能够满足数据密集型应用的需求。 开发板具有31个通用输入/输出(GPIO)端口,这些端口支持配置映射,使得外设使用更加灵活。它还集成了多种外设接口,包括ADC、音频I2S接口、脉冲密度调制(PDM)接口、NFC、实时时钟(RTC)、定时器、量化器(QDEC)、串行外设接口(SPI)、双向总线(TWI)和通用异步收发传输器(UART)、脉冲宽度调制(PWM)以及数字信号处理器(DSP)等,为开发者提供了强大的扩展性和灵活性。 在安全性方面,模块内置了TrustZone技术和浮点运算单元(FPU),这使得开发板在处理安全敏感和计算密集型任务时更为可靠。此外,它还支持ChannelSounding功能,这可以进一步提高无线信号传输的效率和可靠性。 典型的应用场景包括2.4GHz低功耗蓝牙应用系统、边缘设备上运行的机器学习模型、智能家居、工业领域的传感器融合应用以及健康监测设备等。借助于如此丰富的功能和高性能,开发者可以快速地设计和部署各种物联网产品。 模块的尺寸小巧,具有类似纽扣电池的嵌入式系统级设计,这使得其适合集成到便携式和空间受限的设备中。它的设计注重降低开发成本并加快产品上市速度,模块的高品质设计、严格的品质管控以及全球市场认证确保了产品的可靠性和快速上市。 在引脚分配方面,模块提供了详细的引脚说明,方便开发者正确连接各种外围设备。如引脚P0.00到P0.04,P1.00到P1.14,P2.00到P2.10等,每个引脚都有明确的I/O功能定义,有助于简化硬件开发过程。 值得一提的是,该开发板还配备了板载调试器,这为开发者提供了极大的便利,使其能够在不借助外部调试设备的情况下进行程序的下载和调试工作。这不仅节省了成本,也加快了开发调试的流程。 nRF54L15 + nPM1300开发板以其强大的处理能力、丰富的外设接口、低功耗设计和快速上市的能力,成为了物联网领域内的一款优选开发工具。它不仅适用于专业开发者快速原型开发和产品迭代,也适合对性能和灵活性有高要求的工业和消费级应用。
2025-09-15 18:04:09 602KB nordic
1
Doc为基于Xilinx FPGA的系列实验。 实验内容包括原理介绍、思路引导、代码编写、上板调试。 学习内容涵盖:串口UART、SPI、I2C、USB、DDR3、RAM、ROM、FIFO、以太网等。 小梅哥团队所编纂的《Xilinx ACX720 V3 FPGA开发板自学教程》是一本专注于指导用户通过自学方式掌握Xilinx FPGA开发板相关知识与实践操作的教材。该教程通过一系列实验的方式,引导读者从基础原理到实际应用逐步深入学习,并最终能够独立完成项目研发。 该教程的主要学习内容包括但不限于: - 串口UART:即通用异步收发传输器,用于实现FPGA与电脑或其他设备之间的数据通信。 - SPI:即串行外设接口,是一种常用的高速、全双工、同步通信总线,广泛用于微处理器和各种外围设备之间的通信。 - I2C:是一种多主机的串行总线,支持多设备之间的通信,常用于微控制器与外围设备间通信。 - USB:通用串行总线,可实现设备的热插拔和即插即用。 - DDR3:第四代双倍数据速率同步动态随机存取存储器,具有高速数据传输特性。 - RAM与ROM:随机存取存储器和只读存储器是两种不同的存储设备,分别用于不同的存储需求。 - FIFO:先进先出存储器,在数据缓冲和流处理中常见。 - 以太网:广泛使用的局域网技术,教程中介绍了数据链路层和网络层的基本操作。 教程不仅详细介绍了各个硬件接口和协议的原理和应用,还着重指导了如何在实际开发板上进行代码编写与调试。此外,教程还对开发板上集成的丰富外设功能与接口提供了详尽的指导,使读者能掌握更多实际操作技能。 教程的编写团队来自武汉芯路恒科技,该团队专注于通过开发板、培训和项目研发三位一体的方式,培养用户的FPGA独立开发能力。学习材料的更新迭代记录显示了教程的不断完善和优化,从V1.0版本到V3.4版本,每一步都有细致的改进和新内容的添加,不断更新到支持最新的ACX720 FPGA开发板。 教程的实践性非常强,例程和实验都是基于Vivado 2018.3版本创建,保证了教程与实际开发环境的同步。读者可以通过访问提供的网站和店铺获取更多的学习资料与支持。 这是一本内容全面、实践性强、更新及时的自学教材,非常适合希望通过自学方式深入掌握Xilinx FPGA开发技术的学习型用户。通过本文档,用户能够系统性地学习到FPGA开发的各个方面,并在实践中不断成长,最终实现独立进行FPGA项目开发的目标。
2025-09-15 11:12:06 120.88MB xilinx
1
WTMDK2101-ZT1 是针对 WTM2101 AI SOC 设计的评估板。 WTMDK2101-ZT1 主要包含 WTM2101-S1 核心板接口,驻极体麦克风接口,音频模块接 口(如 ES8156/ES8311/ES8388/MAX98357 等),USB 串口,耳机接口,电池接口,电源监 测及控制接口等。 WTMDK2101-ZT1 评估板,可用于 WTM2101-S1 核心板测试,以及助听器通用方案的开 发。 《WTM2101 ZT1 开发板用户使用手册》是针对WITMEM公司推出的WTM2101 AI SOC芯片设计的一款评估板,主要用于开发者进行功能测试和方案开发。该手册详细介绍了WTMDK2101-ZT1开发板的各个组成部分和使用方法,帮助用户熟悉和掌握这款AI SOC的性能与应用。 1.1 评估板模块 WTMDK2101-ZT1包含了WTM2101-S1核心板接口,该核心板是整个评估板的核心,集成了WTM2101芯片。此外,还提供了驻极体麦克风接口,用于捕捉声音信号;音频模块接口兼容多种音频编解码器,如ES8156、ES8311、ES8388、MAX98357等,以满足不同应用场景的需求。USB串口用于数据传输,耳机接口供用户直接监听音频效果,电池接口则支持外部电源供电,电源监测及控制接口确保系统稳定运行。 1.2 主要器件说明 WTM2101是一款AI SOC,集成了AI处理单元和多种音频处理功能,适用于语音识别、语音合成等应用。ES8156、ES8311、ES8388、MAX98357等音频编解码器提供高质量的音频输入和输出,保证了音质的表现。 1.3 系统框图说明 系统框图清晰展示了WTM2101与各外围模块的连接关系,包括核心板与音频接口、电源管理模块、用户接口等之间的信号流,为开发者提供了直观的硬件结构理解。 2.1 WTM2101 核心板电路 这部分详细描述了WTM2101芯片在开发板上的电路布局,包括芯片的电源供应、时钟管理、I/O接口等关键部分。 2.2 电源管理电路 电源管理电路设计对系统的稳定运行至关重要,手册中将解释如何为开发板的不同部分提供合适的电压,并确保电源的高效、稳定。 2.3 外围接口电路 外围接口电路涵盖了USB、音频接口、跳线等,说明了这些接口的连接方式和功能,以便用户正确地连接和使用。 2.4 电路更新 这部分可能涉及评估板的电路改进或新增功能,对于跟踪开发板的最新状态和优化方案具有重要意义。 3.1 WTMDK2101-ZT1 评估板接口 手册列出了评估板的所有接口,包括物理连接、电气特性,以及它们在实际应用中的作用。 3.2 WTMDK2101-ZT1 跳线说明 跳线设置可以改变评估板的工作模式或功能,手册中详细阐述了如何通过调整跳线实现不同的配置。 4. 丝印图 丝印图提供了评估板的实物视图,标记了各个部件的位置,有助于用户在实际操作中快速定位和识别。 此手册不仅是一个技术文档,还是一个开发者工具,它涵盖了从硬件连接到软件配置的全过程,为用户提供了全面的指导,帮助他们充分利用WTM2101的潜力,进行高效的AI应用开发。
2025-09-09 11:41:42 2.64MB
1
TL2837x-EasyEVM是一款基于广州创龙SOM-TL2837x核心板所设计的高端单/双核浮点开发板,它为用户提供了SOM-TL2837x核心板的测试平台,用于快速评估SOM-TL2837x核心板的整体性能
2025-09-08 13:39:33 2.21MB DSP
1
STM32 FSMC (Flexible Static Memory Controller) 是意法半导体公司生产的微控制器STM32系列中的一个重要特性,它提供了一种高效的方式,使得MCU能够与各种外部存储器进行通信,包括SRAM、NOR Flash以及像FPGA这样的复杂逻辑器件。在本案例中,我们将探讨如何使用iCore开发板上的STM32通过FSMC接口来访问FPGA。 我们需要了解STM32的FSMC结构。FSMC包含多个独立的接口,可以同时处理多个数据传输,支持多种协议,如ASync、Sync SRAM、NOR Flash等。它有独立的数据线、地址线和控制信号,能实现高速传输,并且支持等待状态控制,以适应不同速度的外部设备。 对于STM32访问FPGA,首先要确保开发板上的STM32型号支持FSMC。例如,STM32F10x系列不包含FSMC,而STM32F4、STM32F7等高性能系列则具备此功能。然后,你需要配置STM32的FSMC控制器,设置相应的时序参数,如读写周期、等待状态、地址和数据线的高低电平时间等,这些参数应根据FPGA的具体性能进行调整。 在硬件层面,连接STM32的FSMC引脚到FPGA的相应I/O口。通常,FSMC接口会提供地址线、数据线、读/写控制线、片选线等。确保这些线路的正确连接是成功通信的基础。 接下来是软件部分。在STM32的固件库中,有专门的FSMC驱动函数供开发者使用。需要初始化FSMC控制器,设定好对应的Bank(例如,对于访问FPGA可能选择Bank1_NORSRAM)。然后,配置所需的时序参数,这些参数在`stm32fxxx_hal_fsmc.h`头文件中定义。编写读写操作的函数,调用HAL_FSMC_Read/Write接口来与FPGA进行数据交换。 对于FPGA端,你需要设计一个适配器逻辑,接收来自STM32的地址、数据和控制信号,并根据这些信号执行相应的操作。这可能涉及到FPGA内部的分布式RAM、查找表(LUT)、寄存器等资源的使用。同时,FPGA也需要产生相应的响应信号,如读数据返回或写确认信号。 在调试过程中,使用逻辑分析仪或示波器监控STM32与FPGA之间的信号,检查是否有错误或异常。同时,可以通过STM32的GPIO输出一些调试信息,以帮助诊断问题。 总结来说,STM32通过FSMC访问FPGA是一项涉及硬件连接、STM32的FSMC配置、FPGA逻辑设计以及软件编程的综合任务。它允许MCU与FPGA进行高效的交互,实现灵活的系统扩展和定制。在实际应用中,这一技术广泛应用于嵌入式系统设计,如实时数据处理、高速数据传输、并行计算等领域。理解并掌握这一技术对于提升嵌入式系统的性能和灵活性至关重要。
2025-09-05 14:01:37 4.19MB FPGA STM32
1