随着全控型功率器件的高频调制技术的快速发展和不断完善,开关型逆变器无论在电路的基本形式或控制的基本方法方面都已趋于成熟。然而,开关型逆变器技术仍然在许多方面以更快的速度不断地发展,从总体来看,可以包含以下方面:     (1)高频化     开关型逆变器在高频化的发展方向上已经取得了很大的成就。高频化技术直接导致了隔离变压器和交流滤波器体积、重量的明显减小;同时,高频化也导致了开关损耗的迅速增加和电磁干扰的增大。高频化的发展也在很大程度上受制于逆变器转换功率的量级。     软开关技术的提出和应用在很大程度上缓解了开关损耗和电磁干扰的影响,特别是PWM软开关技术在实现软开关的同时,兼顾了
2023-02-20 10:55:25 70KB 开关型逆变器技术的发展趋势
1
随着生产的发展和技术的进步,特别是各种具有整流入端的电力电子负载的广泛应用,即各种非线性的 时变的负载和设备的大量涌现,电力系统中产生大量谐波并对电力系统的安全运行产生威胁。电力系统的谐波问题和低功率因数问题,主要由各种中小负载和设备的电子电源和电力电子装置造成的,它们是最严重的污染源。
2022-03-30 14:35:45 276KB 变频|逆变
1
介绍了开关型霍尔传感器的工作原理,设计了适用于工程测量的具体线路,并分析了该线路的特点!
2022-01-26 15:17:04 174KB 霍尔传感器 工程实现 差动放大电路
1
本文给出了23V/3A直流电源设计方案的设计原理图、元器件列表及PCB元件布局图。该高效率23V、3A直流电源参考设计,服务于智能家电,智能安防应用领域。文章介绍了该方案核心的直流降压开关型稳压器DIO5413,其可以应用到便携导航设备,机顶盒,平板电视,安防监控等多领域。
1
本文给大家分享了电流开关型D类放大器的原理电路。
2021-12-27 21:58:07 22KB 电流开关型 D类放大器 电路 文章
1
一种利用单片机控制的开关型智能稳压电源.doc
2021-09-25 12:02:55 436KB 文档
行业资料-电子功用-具有电流型控制的调谐开关型电源.zip
2021-09-13 22:02:55 739KB
CO2激光器电源都使用了工频变压器,由于激光输出功率较大,电源消耗的电功率也比较大,所以电源的体积和重量明显加大.有时为 减小电路的负担,在输入端还使用了自耦变压器.这些都使得电源难以小型化.
2021-09-02 00:02:07 19KB CO2 激光器 电源电路 开关型
1
本文提出了一种基于TI公司CORTEX-M3为内核的32位单片机的智能开关型电子负载方案。本设计以lm3s811芯片为控制核心,通过斜坡发生器产锯齿波和经比例积分运算得到的反馈电压作比较生高频PWM波控制MOSFET管的导通,然后经过误差比较器的PI调节构成闭环负反馈控制环路。 开关型电子负载具有优良的精度、稳定性和动态响应,并结合精确的软件控制,实现了电源测量的快速和准确。
2021-08-28 18:05:57 5.78MB CORTEX-M 智能开关型
基于TI公司CORTEX-M3为内核的32位单片机lm3s811的智能开关型电子负载WORD论文文档+ALTIUM原理图PCB+软件程序源码. 本文提出了一种基于TI公司CORTEX-M3为内核的32位单片机的智能开关型电子负载方案。本设计以lm3s811芯片为控制核心,通过斜坡发生器产锯齿波和经比例积分运算得到的反馈电压作比较生高频PWM波控制MOSFET管的导通,然后经过误差比较器的PI调节构成闭环负反馈控制环路。 开关型电子负载具有优良的精度、稳定性和动态响应,并结合精确的软件控制,实现了电源测量的快速和准确。 关键词: 开关 电子负载 PI调节 电源测试 1. 系统方案 本开关型电子负载系统采用TI公司Cortex—M3内核的LM3S811单片机为控制核心,通过LCD显示和4X4矩阵键盘组成的人机交互界面设定系统的工作方式和数值;然后用ADC采样输入电压计算出接入电路的工作电流值和与之对应的DAC的输出电压值;接着将DAC的输出电压和经采用电阻通过采样电路得到的电压作比例积分运算并做相位补偿,构成误差比较电路。再将运算的输出值与双极性的斜波作比较得到PWM波;PWM波经MOS管高速驱动电路控制MOS管的开通与关断,从而控制接入电路的电流值,构成了软硬件的闭环控制系统。通过以上软硬件的闭环控制就能够得到可控的稳定电流值;再通过控制接入电路的稳定的电流值,经过软件的计算和处理得到可控的稳定的功率值、电压值、电流值。最终实现了开关型的电子负载。系统结构框图如下所示: 图1 开关型电子负载系统框图 本设计的关键在于得到接入电路的可控的稳定电流,得到可控的稳定的电流的关键如下: (1) 产生双极性的不失真的斜波; (2) 采样回来的输入电压的精度,运用LM3s811自带的硬件过采样和自写的 软件过采样,以牺牲少量时间来换取精度的方法保证采样回来的电压值准确可靠; (3) 纯硬件的PWM产生及PI调节的硬件负反馈环路,具有快速的硬件反馈,及动态调节能力,如图下图所示: 图2 PI调节的硬件闭环控制环回路 (4) 实时的软件反馈,采用了PI控制算法,实时检测采样电流、控制DAC输出,建立实时的软件闭环控制,如图所示: 图3 PI控