YOLOV8多任务(车道线检测+目标检测+可行驶区域)模型项目源码(带数据,可一键运行)
2024-10-15 22:15:19 229.22MB 目标检测
1
数据集齐全(60k+数据) 所用方法多,不论老师要求什么,总有符合用得上(分类,逻辑回归,时间序列) 代码+数据集+报告一条龙服务。 内容说明: 数据预处理,数据清洗,对数据进行描述性分析,统计分析,相关性分析,用ggplot2画图。并分别用逻辑回归和决策树分类建立模型。和用时间序列预测数据。 难度不低于课程实践
2024-07-02 10:43:28 17.94MB r语言 逻辑回归 数据挖掘
可以通过域名绑定,一个空间可以放置很多个网站,就是站群。这个是由php开发的。做站群非常容易。只要安装好,进行简单的数据库配置。就可以开发自己的站群了
2024-06-04 15:21:00 7.25MB
1
使用matlab建立bp神经网络回归预测,带完整代码、数据、测试结果、详细说明,读者可自行修改,后续会进行多种回归预测对比以及建立复杂神经网络
2024-04-29 19:46:43 195KB 神经网络 matlab
1
kriging模型,python编写,带数据
2024-04-17 18:38:23 4KB python 数据集
1
使用卷积加循环神经网络加注意力机制进行时间序列预测。 适用于不懂时间序列预测流程的研究小白,使用这个资源能够很好的理解时间序列预测的整个流程。熟悉数据在网络中的形状变换。代码拿来修改一下数据集路径和些许参数即可运行。
2024-04-08 09:17:32 425KB lstm 数据集
1
这份资源是一份针对深度学习计算机视觉领域的实例分割源码,使用 Ultralytics YOLOv8-seg 模型和 COCO128-seg 数据集进行目标检测和实例分割任务。提供了一个亲身测试且直接可运行的实例分割解决方案。 数据集我已经准备好了,确保用户可以无需额外下载数据即可直接开始模型的训练和验证。这个资源旨在帮助用户轻松理解和应用 YOLOv8-seg 模型进行目标检测和实例分割。适合那些寻求快速部署和测试深度学习模型的开发者和研究人员,特别是在计算机视觉领域。
2024-03-07 14:40:18 66.4MB 数据集
1
这个项目是一个基于YOLOv8-Pose的姿态识别系统,专门用于识别和分析人体姿态。项目采用了最新的YOLOv8-Pose算法,结合了COCO数据集的8种常见姿态,能够快速准确地识别人体的各种姿态。这个可以作为一个简单的项目案例,后续可以直接换成自己的数据去进行训练。 功能特点: 高效识别:使用了先进的YOLOv8-Pose算法,确保了识别的准确性和效率。 支持多种姿态:能够识别COCO数据集中定义的8种主要姿态。 实时处理能力:项目设计支持实时姿态识别,适用于视频监控、动态分析等场景。 使用方法: 环境要求:详细说明所需的操作系统、依赖库和运行环境。 安装步骤:提供项目安装和配置的具体指导。 运行指南:说明如何启动姿态识别任务,包括命令行参数等。
2024-01-15 10:20:54 30.81MB 数据集
1
SVR实现多输入多输出回归模型搭建,python,带数据
2023-12-21 22:48:44 17KB python 数据集
1
按照后期进行数据分析的需求,对数据进行预处理。 -描述性统计:选择合适的方法对数据进行统计分析。包括对数值型和类别型属性的统计,并对分析结果进行图形化的展示(使用ggplot2或者lattice包)。 -推断性统计:选择合适的假设检验方法,分析属性间的相关性、两组数据间是否具有显著性差异,分析结果并给出结论及必要的图形展示。 - 数据挖掘 根据数据特征及需求,利用分类、聚类或时间序列方法挖掘蕴含在数据中的模式及必要的图形展示,用回归模型预测走势 注意:对聚类结果分析聚簇特征   对分类结果计算准确性。   使用时间序列分析方法可判断数据是否存在趋势、周期性等特征,或对数据进行预测。 (分类、聚类、时间序列,回归模型至少使用2种方法)
2023-12-15 14:41:58 3.36MB r语言 开发语言 数据挖掘 数据分析