Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-06-05 14:32:39 3.41MB matlab
1
在电力系统分析中,谐波检测是一个重要的领域,它对于保证电网稳定运行、提高电能质量、减少系统损耗等方面具有重大意义。传统的电力系统谐波检测主要基于快速傅立叶变换(FFT)及其改进算法,尽管FFT能够精确地确定出平稳波形中各次谐波的幅值和相位,但它不提供时间局部信息,因此仅适用于稳态信号的分析处理。对于包含非稳态成分的信号,FFT则显得力不从心,无法给出有效的非稳态谐波信息。为了克服这一缺陷,近年来,小波变换以其在时域和频域同时具有良好的局部化特性,逐渐成为电力系统谐波检测领域的新宠。 小波变换是一种有效的时频分析工具,它能够在局部区域内对信号进行多分辨率分析。相较于傅立叶变换,小波变换能够提供时间局部信息,特别适合分析电力系统中的瞬态信号。小波变换的一个重要应用是在电力系统谐波测量中的应用。通过对含有谐波的信号进行正交小波分解,可以将不同尺度的结果看作是不含谐波的基波分量,从而实时跟踪谐波变化。特别是随着Mallat算法和高速数字处理芯片的应用,小波变换用于谐波检测的动态性能得到了极大提高,满足了电力有源滤波器对谐波实时检测的要求。 小波包变换是小波变换的延伸,它在小波变换的基础上对高频段的信号进行更精细的划分,使得高频段也能获得和低频段一样的频率分辨率。小波包变换在时变谐波分析中的应用证明了其对时变谐波的检测具有较高的精确性,同时也展现了小波包在时频域内优秀的分析性能。小波包变换可以配合连续小波变换使用,能同时检测并识别包括整数次、非整数次和分数次谐波在内的各种谐波。 复小波分析和自适应小波分析是小波变换领域的其他延伸,它们也逐渐应用于谐波检测当中。例如,文献[8]首次提出了将小波多分辨率分析与傅立叶变换结合进行谐波检测的算法。该算法首先利用小波变换将原始信号中的稳态成分和非稳态成分分离,然后用傅立叶变换分析稳态信号,得到稳态谐波的幅值和相位。但是,该方法并未对小波变换后的非稳态谐波信号进行进一步处理,在非稳态信号成分复杂时无法提供有效的非稳态谐波信息。针对这样的问题,本文将小波熵的概念引入到谐波检测中。 本文提出了一种改进的谐波检测算法,即通过结合傅立叶变换和小波变换的优点,将两者联合起来使用,以此达到对所有类型谐波信号都能有较好检测效果的目的。这种联合方法能够准确检测出稳态和非稳态谐波的相关参数,并通过仿真及实验证明了算法的正确性。此外,小波变换和傅立叶变换联合使用的方法,也得到了国家自然科学基金的资助。 傅立叶变换作为谐波分析的基础理论,是从频域角度观察信号的数学工具,其基本原理是任意函数都可以分解为无穷多个不同频率的正弦波之和。而小波变换则是一种窗口大小固定但形状可变的时频局部化分析方法,它允许在不同尺度上同时观察信号的时域和频域特征,特别适合分析电力系统中的瞬态信号。通过小波变换,可以准确确定信号突变的时刻,滤除干扰信号,从而更好地分析谐波信息。 在电力系统谐波分析的实际应用中,小波变换已经显示出了其独特的优势。它不仅可以用于电力系统谐波检测,还在信号去噪、故障诊断、信号压缩、图像处理等多个领域得到了广泛应用。未来,随着更多相关技术的研究和发展,相信小波变换在谐波检测及电力系统其他方面的应用会越来越广泛,成为不可或缺的技术工具。
2025-05-31 02:34:09 530KB 首发论文
1
### 基于小波变换的语音信号基音周期估计 #### 概述 基音周期作为语音信号处理中的一个重要参数,在语音信号的数字处理中扮演着至关重要的角色。无论是语音编码、识别还是合成,准确地估计出语音信号的基音周期都是基础性的任务。基音周期指的是声带振动所引起的周期性现象,它反映了语音信号的基本频率特征。 #### 小波变换与语音信号处理 小波变换作为一种时频分析工具,因其在时频域的良好分辨率,成为语音信号处理中的有效手段之一。与传统的短时傅里叶变换相比,小波变换能够更好地适应语音信号的非平稳性特点,从而为提取更为精确的基音周期提供了一种新方法。 #### 小波变换的概念 小波变换是一种通过对原始信号进行平移和伸缩操作来构建一系列子函数的过程,这些子函数统称为小波函数簇。这些小波函数簇能够捕捉到信号在不同时间尺度上的特征变化,对于语音信号来说,这意味着可以更精细地分析信号中的细节信息。 - **母小波函数**:如果一个函数ψ(t)满足特定的可容许性条件(如积分存在且有限),则称其为母小波函数。 - **小波变换公式**:对于任意信号f(t),其连续小波变换可以通过下式计算:\[ W_f(a,b) = \int_{-\infty}^{+\infty} f(t)\psi^*_{a,b}(t)dt \] 其中,\(\psi^*_{a,b}(t) = \frac{1}{\sqrt{|a|}}\psi(\frac{t-b}{a})\) 是小波函数经过平移和伸缩后的形式,\(a\) 表示尺度因子,\(b\) 表示平移因子。 #### 小波变换的基音周期估计原理 为了从语音信号中估计基音周期,可以利用小波变换的多尺度边缘检测能力。语音信号在产生过程中,由于声门闭合瞬间声道受到的强烈激励会在信号中产生明显的突变点。小波变换能够有效检测这些突变点,进而确定声门闭合时刻。通过计算相邻两次闭合时刻之间的距离,即可得到基音周期。 - **多尺度边缘检测**:在不同的尺度上先对原始信号进行平滑处理,然后通过平滑后信号的一阶或二阶导数来检测原始信号中的突变点。例如,可以通过构造一个平滑函数\(\phi(t)\),并求其导数\(\psi(t)=-\phi'(t)\)作为小波函数。 - **计算步骤**:选择合适的母小波函数,并根据式(6)和式(7)构建小波函数;对信号进行小波变换,计算每个尺度下的小波系数;找到小波系数的极大值点,这些点对应于信号中的突变点;通过分析这些突变点之间的距离,估计基音周期。 #### 实验验证与结论 该文中提到了实验结果表明,基于小波变换的方法可以有效地估计出大动态范围内的语音信号基音周期,并且能够获得满足实际需求的较为精确的结果。这证明了小波变换在语音信号处理领域的强大适用性和准确性。 通过小波变换对语音信号进行基音周期估计不仅理论上可行,而且在实践中也得到了很好的验证。这种方法为语音信号处理提供了一种有效的工具,有助于进一步提高语音识别、编码和合成等领域的性能。
2025-05-26 13:48:36 147KB 基音周期 基音检测
1
MATLAB环境中应用高分辨率二维时频分析方法——同步压缩小波变换与曲波变换在混合地震数据分离中的应用,MATLAB环境下同步压缩小波变换与曲波变换在混合地震数据波状分量提取中的应用研究,MATLAB环境下使用二维高分辨时频分析方法提取波状分量(分离混合地震数据) 同步压缩小波变SST是一种新的时频能量排谱算法,与之前的谱重排方法不同,同步压缩小波变是只对频率进行重排,可以重构原始信号,因此受到了广泛的欢迎。 近年来,以同步压缩变为核心发展了多种时频变方法,包括同步压缩短时傅里叶变和同步压缩S变,同步压缩小波包变等。 随着对地震勘探精度要求的越来越高,这些高分辨率时频分析方法也在不同的地震处理问题上展现了自身的优势。 同步压缩变作为一种新发展起来的时频分析方法,将会在地球物理领域有更进一步的发展和应用。 曲波变具有强大的多尺度分析和多方向分析的能力,在地震勘探领域得到了广泛的应用。 可以利用曲波变进行随机噪声和相干线性噪声衰减;可以利用自适应调整曲波阈值来压制随时间空间改变的非相干噪声;可以在曲波域进行稀疏反褶积去除随机噪声;可以在贝叶斯框架下利用曲波稀疏性压制面波;可以将曲波和奇异值
2025-05-10 22:07:23 249KB
1
MATLAB驱动的振动信号处理综合程序集:含基础时频分析、小波与多种高级算法包探索实践,基于MATLAB的振动信号处理算法程序集:时频分析、小波变换及模态分解技术研究,基于matlab的振动信号处理相关程序编写 包括基础的时域频域分析,小波分析,希尔伯特变,谐波小波包变,经验模态分解,变分模态分解,模态分析,混沌振子等常见信号处理算法程序包。 ,基于Matlab的振动信号处理; 时域频域分析; 小波分析; 希尔伯特变换; 谐波小波包变换; 经验模态分解; 变分模态分解; 模态分析; 混沌振子。,Matlab振动信号处理程序包:时频分析、小波变换等算法集
2025-04-15 22:20:36 559KB 柔性数组
1
【图像融合】基于matlab小波变换(加权平均法+局域能量+区域方差匹配)图像融合【含Matlab源码 1819期】.md
2024-11-30 17:05:13 9KB
1
基于小波变换的多聚焦图像融合中,融合方法、小波基和小波分解层数的选取是关键技术。研究一种基于区域能量的多聚焦图像融合方法,分析比较小波基、小波分解层数对图像融合结果的影响,利用熵、峰值信噪比、空间频率对融合图像进行评价。结果表明:提出的融合方法能够得到较好的效果,采用bior2.2 小波基、分解层数为4~6 时得到较好的融合效果,该结果能为实际应用中小波参数的选择提供参考。
2024-09-12 09:24:43 1.58MB 图像处理 小波变换 图像融合
1
在散斑去噪过程中保持图像边缘纹理特征,是光学相干层析图像处理技术的难题。散斑去噪过程中的散斑残留和边缘纹理模糊是该难题的主要诱导因素。为解决这一难题,提出一种基于剪切波变换的改进全变分散斑去噪方法。该方法结合剪切波变换和传统全变分模型,对不同图像区域采用针对性的去噪策略,兼顾散斑去噪与纹理保留,提高了光学相干层析图像的噪声抑制效果。对不同生理、病理状态下的视网膜光学相干层析图像进行测试,结果表明:该方法通过采用区域针对性策略改进了噪声抑制能力,通过引入剪切波变换方法提高了边缘纹理保持能力,进而同时实现散斑去除和纹理保留。此外,与其他散斑去噪方法进行对比,验证了该方法的有效性。
2024-09-05 11:01:21 8.53MB 图像处理 散斑去噪 边缘纹理 光学相干
1
二维灰度图像的小波变换和逆变换在计算机视觉与图像处理领域中扮演着重要的角色。小波变换是一种信号分析工具,能够将复杂信号分解为不同尺度和位置的局部特征,对于图像处理而言,这意味着可以对图像进行多分辨率分析,提取不同层次的细节信息。 在C++中实现小波变换,通常会用到一些开源库,如Wavelet Toolbox或OpenCV。这些库提供了丰富的函数和结构,便于开发者进行小波分析。在这个项目中,可能包含的源码文件有以下几个部分: 1. **数据读取与预处理**:使用C++的文件操作函数读取二维灰度图像,将其转换为适当的数组格式。可能使用OpenCV库中的`imread`函数来读取图像,并进行必要的预处理,例如调整图像尺寸、归一化等。 2. **小波基的选择**:小波变换涉及到多种小波基,如Haar小波、Daubechies小波、Symlet小波等。不同的小波基适用于不同的应用需求,选择合适的小波基是关键步骤。在代码中,可能会定义一个类或者结构体来表示特定的小波基函数。 3. **小波变换**:小波变换分为离散小波变换(DWT)和离散二维小波变换(2D-DWT)。2D-DWT对图像的行和列分别进行一维DWT,然后通过卷积或蝶形运算组合结果。这一过程在代码中可能包含两个递归或循环的步骤,分别对应水平和垂直方向的变换。 4. **图像分解**:小波变换后,图像被分解为低频系数(近似图像)和高频系数(细节图像)。这些系数通常存储在不同的数组或矩阵中,便于后续的处理。 5. **逆小波变换**:为了恢复图像,需要进行逆小波变换。这通常涉及到对高频系数的逆操作,以及与低频系数的合并。逆变换的过程与正向变换类似,但步骤相反。 6. **结果输出**:处理完成后,将重构的图像写入文件,通常使用OpenCV的`imwrite`函数。同时,可能还会提供可视化工具,如MATLAB的图像显示功能,以便观察变换前后图像的差异。 7. **编译与运行**:项目可能包含Makefile文件,用于配置编译选项和链接库。用户可以通过执行`make`命令来编译源码,生成可执行程序,然后运行程序来处理指定的图像。 学习这个项目的源码,可以帮助理解小波变换在图像处理中的实际应用,以及如何利用C++实现这些算法。此外,对于深入掌握小波理论、图像处理技术以及C++编程技巧都是非常有价值的。通过实践,开发者可以进一步优化代码性能,适应更复杂的图像处理任务。
2024-08-12 22:52:28 227KB 小波变换 图像处理
1
整数提升5/3小波变换(Integer Lifted Wavelet Transform, ILWT)是一种在数字信号处理领域广泛应用的算法,特别是在图像压缩和分析中。它通过使用提升框架,以更高效的方式实现离散小波变换(DWT)。Matlab作为强大的数值计算环境,提供了方便的工具来实现这一过程。下面我们将详细探讨ILWT的基本原理、Matlab中的实现方法以及如何进行分解和重构。 **一、整数提升5/3小波变换** 5/3小波变换是一种具有较好时间和频率局部化特性的离散小波变换类型,其主要特点是近似系数和细节系数的量化误差较小,因此在数据压缩和信号去噪等方面有较好的性能。提升框架是5/3小波变换的一种实现方式,相比传统的滤波器组方法,提升框架在计算上更为高效,且更容易实现整数变换。 提升框架的核心是通过一系列简单的操作(如预测和更新)来实现小波变换。在5/3小波变换中,这些操作包括上采样、下采样、线性组合和舍入。提升框架的优势在于,它可以实现精确的整数变换,这对于需要保留原始数据整数特性的应用至关重要。 **二、Matlab实现** 在Matlab中,实现整数提升5/3小波变换通常涉及编写或调用已有的M文件函数。根据提供的文件名`decompose53.m`和`recompose53.m`,我们可以推测这两个文件分别用于执行分解和重构过程。 1. **分解过程(decompose53.m)** - 分解过程将原始信号分为多个尺度的近似信号和细节信号。对输入信号进行上采样,然后通过预测和更新操作生成不同尺度的小波系数。在5/3小波变换中,通常会生成一个近似系数向量和两个细节系数向量,分别对应低频和高频部分。 2. **重构过程(recompose53.m)** - 重构是将小波系数反向转换回原始信号的过程。这涉及到逆向执行提升框架中的操作,即下采样、上采样、线性组合和舍入。通过重新组合各个尺度的系数,可以恢复出与原始信号尽可能接近的重构信号。 **三、代码实现细节** 在Matlab中,可以使用循环结构来实现提升框架的迭代,或者使用内建的小波工具箱函数,如`wavedec`和`waverec`,它们封装了提升框架的具体实现。不过,由于题目中提到的是自定义的`decompose53.m`和`recompose53.m`,我们可能需要查看这两个文件的源代码来了解具体实现步骤。 Matlab提供了一个灵活的平台来实现整数提升5/3小波变换,使得研究人员和工程师能够快速地进行信号处理和分析实验。通过理解ILWT的原理和Matlab中的实现,我们可以更好地利用这种技术来解决实际问题,例如图像压缩、噪声消除和数据压缩等。
2024-07-03 11:23:15 1KB Matlab 提升小波变换
1