这是Infineon公司的一篇技术文档(如有侵权,请联系删除),介绍了肖特基二极管进行射频功率检波的可行方案。因为之前的项目中一直采用芯片检波,价格昂贵,在寻找低成本的解决方案中看到了这份技术文档,亲测VHF和UHF频段实际可用,效果极好,如果你正在寻找低成本的射频功率检波方案,强烈推荐! 在射频通信系统中,功率检波是自动增益控制或电平控制的关键技术之一。功率检波器通常用于监测信号强度,并用于反馈控制中以维持一定的信号水平。传统上,使用芯片进行射频功率检波较为普遍,然而这种方法成本较高。Infineon公司提出了一种使用肖特基二极管进行射频功率检波的方案,旨在解决这一问题。本文档详述了利用Infineon公司的低势垒肖特基二极管实现射频功率检测的电路设计。 肖特基二极管在射频和微波频段具有快速开关和低电容特性,使其成为进行射频功率检波的理想选择。Infineon的低势垒肖特基二极管特别适用于这类应用。文档中介绍的肖特基二极管包括BAT15-02EL、BAT62-02V、BAT63-02V等,分别适用于单二极管检波结构,以及BAT15-04W适用于双二极管检波结构。这些二极管在VHF和UHF频段的实际应用效果优秀,显著降低了设计和实施成本。 文档首先介绍了射频功率检测器的基本概念,随后着重阐述了Infineon RF肖特基二极管的技术特点和优势。接着,文档详细介绍了单二极管和双二极管检波电路的设计与构造。在单二极管检波电路部分,着重讲解了BAT62-02V、BAT63-02V以及BAT15-02EL这三种二极管的电路设计和应用。而在双二极管检波电路部分, BAT15-04W二极管的使用方法和电路构建成为了焦点。 文档还介绍了功率检测器在自动增益控制或电平控制中的应用,强调了使用Infineon肖特基二极管所构建的检波器结构在实现射频功率监测方面的重要性和实用性。此技术文档的受众为需要设计射频功率检测电路的工程师,它为读者提供了全面的设计参考,帮助他们降低设计成本,并优化性能。 通过Infineon公司的这一技术方案,工程师可以在不同的项目中灵活使用肖特基二极管来实现射频功率检波。这种方法不仅成本低,而且在实验中已被证实有效,因此对于寻求经济高效射频功率检测方案的工程师来说,这是一份宝贵的资源。
2025-12-01 09:18:06 997KB 肖特基二极管
1
低噪声放大器的几种典型结构分析(反馈结构、源简并结构、Cascode结构、宽带LNA、差分放大结构等)
2025-12-01 03:35:47 1.09MB
1
射频微电子机械系统RF MEMS开关的高隔离度与低插入损耗特性,同开关自身的结构参数密切相关。为了得到更好的开关性能,在设计过程中有必要对射频MEMS开关的相关参数进行优化。本文用ADS和HFSS仿真设计软件,对射频MEMS并联电容式开关的微波特性进行了分析和仿真,研究了MEMS开关的等效电路参数和结构参数的变化对RF MEMS开关微波特性的影响。仿真结果表明:等效电容参数和MEMS开关桥宽度是影响开关性能的关键参数,当开关的等效电容参数增加20 pF,或MEMS桥的宽度增加40μm时,RF MEMS开关
2025-11-28 16:05:29 668KB 自然科学 论文
1
射频识别(RFID)技术是一种无线非接触式的自动识别技术,它通过无线电波来识别目标并获取相关数据。RFID系统包括应答器(也称为标签)、阅读器、天线以及连接到阅读器的后端计算机系统。RFID的基本原理是通过电磁感应或电磁波的反向散射耦合原理实现读写器与应答器之间的通信。 RFID系统的工作频段主要有低频(LF)、高频(HF)、特高频(UHF)和超高频(SHF)。不同频段的RFID系统适用于不同的应用需求,例如低频RFID适合近距离应用,而超高频RFID能够实现远距离识别。电感耦合方式适用于中低频近距离RFID系统,工作原理类似于变压器模型,基于电磁感应定律;反向散射耦合方式则类似雷达,基于电磁波空间传播规律。 RFID系统中应答器的能量获取主要通过两种方法:从阅读器发出的射频能量中提取电能,或使用内部电池获取电能。此外,RFID标签具有多种特点,例如可以识别单个具体物体、同时读取多个物体、透过外部材料读取数据、存储大量信息并可多次改写,易于构成网络应用环境等。 与条形码相比,RFID技术有显著的不同点。条形码成本低廉,制作简便,适用于快速准确的激光扫描识别,但其识别需要直接视野范围内,且数据存储量有限。RFID标签则无需直接视距,能够透过材料读取,数据存储量大,且标签可重复使用。 RFID标签和条形码的应用领域也有所不同。RFID标签由于其无线识别的特性,被广泛应用于供应链管理、电子票务、智能卡、物品防盗等领域。而条形码则常见于商品零售、物流跟踪和图书馆管理等。 在RFID技术的防伪和食品安全追溯应用方面,RFID标签具有独特的优势,能够为食品、药品等提供有效的防伪和追溯功能。由于RFID标签能够存储丰富信息并可进行多次改写,配合耐环境性和小型化的设计,RFID技术在这些领域的应用给标签印制带来新的活力。 RFID技术的防伪特点包括全球唯一码、数字签名、防转移、防复制等特性。这些特性为RFID技术在产品防伪和安全追溯上提供了坚实的技术基础。 RFID技术除了在上述方面的应用外,其传输线变压器、功率放大器以及EMC(电磁兼容性)、EMI(电磁干扰)、EMS(电磁敏感性)等知识点也是RFID系统设计和应用中的重要组成部分。这些知识点涵盖电路设计、信号传输、以及如何处理电子设备间的电磁干扰等多个层面。 RFID技术作为一种先进的自动识别技术,通过无线电波实现快速、准确的数据交换和处理。RFID技术在物流、供应链、安全防伪等多个领域都有着广泛的应用前景。随着技术的不断进步,RFID技术的应用范围和效率将不断提升,为实现智慧化管理和智能化服务提供有力支持。
2025-11-17 19:06:46 5.48MB
1
IEEE 802.15.4是一种无线个人区域网络(WPAN)技术标准,被广泛应用于低速率无线通信中。此标准主要应用于固定、便携式或移动设备之间的低数据速率无线连接,特别适合于那些对功耗有极低要求的设备,比如使用电池或有限电源的设备。此标准定义了物理层(PHY)和介质访问控制(MAC)子层的规范,这些规范对网络的数据传输效率、设备之间的协调以及网络的总体性能具有决定性影响。 在IEEE 802.15.4协议中,特别提到了该标准支持的精度测距模式,这表示除了基本的数据传输外,标准还支持设备间通过无线信号实现高精度的距离测量。这是通过精确的时序和同步机制实现的,对于定位服务和地理围栏(geofencing)应用来说非常有用。 此外,IEEE 802.15.4标准还定义了适用于不同地理区域的物理层规范,这意味着它能够在全球范围内使用,并且能够在不同国家和地区的无线电频率使用规定下正常工作。 为了满足不同应用的需求,IEEE 802.15.4标准在设计上保证了设备间的互操作性,无论是简单的点对点通信还是复杂的网络结构。该标准还支持多种网络拓扑结构,包括星形、树形和网状拓扑,这为开发人员在设计无线网络时提供了极大的灵活性。 IEEE 802.15.4标准最初发布于2003年,并且在后续的版本中不断更新和改进。它的最新修订版是IEEE 802.15.4™-2020,这版标准是在IEEE 802.15.4-2015的基础上进行的修订,于2020年5月6日获得IEEE SA Standards Board的批准。 标准中的MAC子层负责管理和控制对无线媒介的访问。它主要处理信道接入控制、网络设备的发现过程以及数据包的打包和拆包。在IEEE 802.15.4中,MAC子层使用了诸如信标启用模式、非信标启用模式以及低功耗监听模式等多种工作机制,以适应不同的应用场景和网络状况。 物理层(PHY)涉及无线信号的发射和接收,包括无线信号的调制解调、信号强度的控制以及信号频率的选择等。在标准中定义的PHY可以为在不同地理区域操作的设备提供服务,这些设备包括但不限于低功耗广域网(LR-WPAN)设备。 该标准还支持多种类型的网络,比如自组织网络(ad hoc network)和具有短距离无线通信特点的个人区域网络(PAN)。自组织网络强调设备在没有中心化控制的情况下相互通信,而个人区域网络通常覆盖的范围有限,非常适合家用或办公室环境中的设备互联。 IEEE 802.15.4标准中的设备需要能够在不同的无线电频率(RF)范围内工作,包括在短距离无线通信中常见的频段。这些频段通常具有较低的数据传输速率,但相应的功耗和设备成本也较低,这使得它适用于各种传感器网络、家居自动化和医疗监控应用。 由于其在低功耗通信方面的优势,IEEE 802.15.4标准经常被与其他无线技术联合使用,比如Zigbee和Thread,它们基于IEEE 802.15.4标准构建了更高级的网络协议栈,为物联网(IoT)设备提供更丰富的功能和更好的网络管理能力。 此外,IEEE 802.15.4还定义了相关的安全机制,保护设备免受数据泄露和未授权访问的威胁。在物联网设备日益普及的今天,安全已经成为设计任何无线通信标准时的重要考虑因素。 IEEE 802.15.4标准是一套全面的技术规范,它包括了物理层和MAC子层的技术要求,支持设备在多种网络拓扑结构中进行低数据速率、低功耗的通信。其支持精度测距、多种工作模式和全球适用性的设计,使其成为了无线个人区域网络通信的首选标准之一。随着无线通信技术的持续发展,IEEE 802.15.4标准也在不断地进行更新和改进,以满足不断变化的市场需求和应用挑战。
2025-11-01 17:55:42 5.95MB IEEE 802.15.4
1
目 次 I 前 言 II 1 范围 1 2 引用标准 1 3 缩略语 1 4 测试环境、仪表及测试基本要求 2 4.1 常温测试环境 2 4.2 测试仪器和设备 2 4.3 测试基本要求 2 5 手机状态确认 3 5.1 软件版本 3 5.2 硬件版本 3 6 测试方法及判定标准 3 6.1 线缆测试 3 6.1.1 概述 3 6.1.2 频率误差和相位误差 4 6.1.3 发射机输出功率和突发脉冲定时 4 6.1.4 发射输出频谱 6 6.1.5 参考灵敏度 8 6.1.6 多径和干扰条件下的参考灵敏度 8 6.2 天线耦合测试 9 6.2.1 概述 9 6.2.2 耦合测试路径损耗值及测试位置确定方法 10 6.2.3 标杆机、标准样机、金机的概念及选择原则 10 6.2.4 频率误差和相位误差 12 6.2.5 发射机输出功率和突发脉冲定时 12 6.2.6 发射输出频谱 13 6.2.7 参考灵敏度 13 6.2.8 人体感应下的参考灵敏度 14
2025-10-27 23:04:13 237KB 射频性能测试规范
1
该压缩包内含SMP13系列PIN管的S参数文件,可用于在ADS中建模仿真射频电路时使用,主要包括SMP1302、SMP1320、SMP1321、SMP1322、SMP1324、SMP1325、SMP1330、SMP1331、SMP1334、SMP1340、SMP1345、SMP1371等常用PIN管 射频电路在现代通信系统中扮演着至关重要的角色,其设计和优化离不开精确的电路模型仿真。本压缩包提供了SMP13系列PIN管的S参数文件,这些文件是射频电路设计和仿真中不可或缺的基础数据。S参数(Scattering参数),又称散射参数,是描述射频电路端口之间线性关系的一种参数,它能够表示信号在电路端口之间的反射和传输情况。ADS(Advanced Design System)是一种广泛使用的高频电子设计自动化软件,它提供了一个集成化的平台,用于电路的建模、仿真、分析和优化。 本压缩包中包含的SMP13系列PIN管S参数文件可用于在ADS软件中进行射频电路的建模仿真。PIN管是半导体器件中的一种,广泛应用于射频和微波通信系统中,特别是在混频器、检波器、调制器、开关和限幅器等应用场合。该系列包括多个型号,如SMP1302、SMP1320、SMP1321、SMP1322、SMP1324、SMP1325、SMP1330、SMP1331、SMP1334、SMP1340、SMP1345等,它们各自具有不同的电气特性,可满足不同射频电路设计的需求。 每个S参数文件都对应于SMP1371型号的PIN管在不同工作条件下的测量结果,例如不同的电流(如1mA、50mA、10mA、100mA等)和电压(如-35V、-20V、-10V、0V、10uA、100uA等)水平。通过这些文件,工程师可以更精确地模拟和分析PIN管在不同工作状态下的射频特性,从而对电路进行优化,确保电路在特定的工作条件下具有最佳性能。 ADS软件中的S参数模型仿真允许设计师直观地观察到射频信号在PIN管内部的行为,包括信号如何被反射、传输以及如何受到电压和电流变化的影响。此外,S参数模型还可用于进行大规模电路的级联分析,从而对整个射频链路进行仿真,这对于评估射频电路的整体性能和改进设计具有重要意义。 利用这些S参数文件,射频工程师可以在ADS软件中构建精确的电路模型,并进行参数扫描、最坏情况分析以及统计分析等,这些都是评估射频电路设计是否符合规格要求的关键步骤。此外,通过仿真还可以预测在实际制造和实际应用中可能出现的问题,并在产品推向市场之前进行必要的改进。 该压缩包提供的SMP13系列PIN管S参数文件对于从事射频电路设计和优化的工程师来说是一份宝贵的资源。通过ADS软件的仿真功能,结合这些精确的S参数数据,可以显著提高射频电路的设计质量和可靠性。
2025-10-26 22:07:55 22.85MB 射频电路
1
射频技术是无线通信、电子工程等领域中的核心部分,它涉及到信号的传输、处理和接收。高级射频工具箱是射频工程师日常工作中不可或缺的软件资源,这些工具可以帮助他们进行精确的计算和设计,以优化射频系统性能。以下是根据标题、描述和标签提炼出的一些关键知识点: 1. **射频与微波**: 射频通常指的是频率在3 kHz到300 GHz之间的电磁波,而微波则属于射频的一部分,频率范围在300 MHz至300 GHz之间。它们广泛应用于移动通信、卫星通信、雷达系统和无线网络等。 2. **衰减器**: 衰减器是一种电路元件,用于降低信号功率水平,但不改变信号的频率特性。PI型和T型衰减器是两种常见的设计结构。PI型通常由两个串联的电阻和一个并联的电阻组成,而T型则包含三个串联的电阻。理解这两种类型的衰减器的工作原理和设计方法对于调整系统增益和噪声性能至关重要。 3. **幅度均衡器**: 幅度均衡器是用来校正信号幅度失真的设备,确保信号在不同频率上的幅度一致。这对于保持信号质量、减少失真和提高系统带宽效率至关重要。设计幅度均衡器时,需要考虑滤波器特性、带宽和插入损耗等因素。 4. **分配支路(功分器)**: 功分器是将输入信号均匀地分成两路或更多路的组件,常见于天线阵列和多路传输系统。根据应用需求,可以设计为功率相等的功率分配器或功率比例分配器。理解功分器的隔离度、插入损耗和相位平衡对于优化系统性能至关重要。 5. **微带线**: 微带线是一种常用的射频和微波传输线,它是在薄金属带片上敷设在绝缘基板上,用于连接电路元件。微带线的设计涉及到带宽、传输损失、带内和带外特性,以及与其他组件的匹配。 6. **电缆阻抗**: 电缆阻抗是衡量电缆传输信号能力的一个关键参数,通常表示为特性阻抗。匹配电缆阻抗至源和负载端的阻抗,可以最大程度地减少信号反射,从而提高信号质量。 7. **常用工程常量**: 在射频工程中,有许多常量用于计算和设计,如自由空间路径损耗、衰减因子、速度因子、介电常数等。熟悉这些常量并知道如何正确使用它们,能够提高设计的准确性和效率。 通过使用高级射频工具箱,工程师可以快速、准确地计算这些关键参数,并进行系统仿真,以满足特定应用的需求。这种工具集通常包括各种计算工具、图表和模拟功能,使得复杂的设计过程变得简单易行。在实际工作中,熟练掌握这些工具的使用,能极大地提升射频工程师的工作效率和设计质量。
2025-10-23 14:26:02 285KB
1
内容概要:本文系统介绍了射频工程的基本概念、核心技术、应用领域及发展历程与未来趋势。射频工程是无线通信的核心,涵盖电磁波传播理论、射频电路设计、天线设计和调制解调技术四大关键技术,广泛应用于通信、卫星通信、5G、GPS、计算机工程及军事雷达等领域。文章从麦克斯韦理论预言到赫兹实验验证,再到马可尼实现跨大西洋通信,梳理了射频工程的发展脉络,并展望了其在6G、物联网和人工智能融合中的广阔前景。; 适合人群:对电子技术、通信工程感兴趣的初学者及具备一定基础的工程技术人员,适合高校学生、通信行业从业者及科技爱好者。; 使用场景及目标:①帮助读者理解无线通信中射频技术的基本原理与实现方式;②了解射频在手机、Wi-Fi、卫星、雷达等实际系统中的应用机制;③把握射频工程的技术演进方向,为学习或职业发展提供参考。; 阅读建议:建议结合文中提到的技术原理与实际案例进行延伸学习,关注射频与新兴技术如AI、物联网的融合趋势,适合边读边梳理知识框架,以建立对无线通信系统的整体认知。
1
本书聚焦大规模物联网时代的无线射频能量传输技术,探讨如何构建可持续的零能耗网络。随着海量低功耗设备接入,传统供电模式难以为继,射频能量收集(RF-EH)成为突破瓶颈的关键技术。书中系统梳理了环境射频采集、专用能量源传输、功率信标网络部署、无线供能通信架构及同时传能与传信(SWIPT)等核心方案,并引入随机几何、有限码长编码等分析工具,提出面向大规模连接的新型能量传输机制。作者团队结合最新研究成果,剖析了多频段整流天线、可调谐能量采集器等前沿硬件设计,评估了不同协议下的能效表现,并展望了人工智能、协同中继等技术融合的可能性。本书为实现绿色、自持、泛在的物联网提供了理论基础与工程指导,是通信、能源与物联网交叉领域科研人员的重要参考。
2025-10-22 11:13:37 19.28MB Wireless Power
1