一共包括1080张车内带有安全带的人员驾驶图像,同时包括对应的1080个安全带目标检测的位置标记文件。可以用于驾驶员监控的安全带的目标检测训练。
2025-11-28 11:12:32 82.73MB 目标检测 安全带检测
1
本文提出了一种基于深度学习的安全带检测方法,尝试将近年来在图像检测方面有较好应用的深度学习方法来提高安全带检测的准确率。相比传统的安全带检测方法,深度学习的最大优势在于它可以自动的从样本数据中学习特征,最大限度的减少了人为的干预以及手工设计特征的复杂性。 本方法充分发挥深度学习端到端的特性,充分利用rcnn和yolo系列算法的优点,搭建深度学习中的卷积神经网络模型,并用卷积神经网络模型对样本图片进行训练得到用于安全带检测的模型,然后用该模型对待检测图片进行检测,判断出车辆司机是否佩带安全带。本文中利用Keras框架对整个训练和检测过程进行了实现,并对实验结果进行了分析,证明了该方法的有效性。
2022-09-09 16:16:28 20.23MB 图像识别 深度学习
1
随着计算机视觉近几年的发展, 相关工作者越来越侧重人工智能算法在电力安全管控系统的实际应用. 本文针对电力检修工作人员安全带规范问题, 基于Mask R-CNN算法提出了一种新型高空作业安全带低挂高用违规检测算法, 实时高效率完成作业者安全带违规检测问题. 针对安全带挂环违规现象的复杂性和场景多变性等问题, 本文提出实用于安全带检测和人体关键点信息相结合检测的Mask-Keypoints R-CNN新型高空作业安全带违规挂法的检测方法, 该算法基于人体关键点定位检测模块进行裁剪人体关键部位有用安全带数据集, 结合安全带检测模块进行判断作业人员违规情况, 算法本身具有很强的实用性和高效性, 并取得了较高的精确率.
1