在机器学习领域,经典算法是构建基础模型的核心。本篇内容涉及的十大经典算法分别是:C4.5、CART(分类与回归树)、朴素贝叶斯、支持向量机(SVM)、K近邻(KNN)、AdaBoost、K均值(K-means)、最大期望(EM)、Apriori算法以及Pagerank。这些算法基于不同的原理和应用场景,构成了机器学习的基本工具箱。 机器学习方法根据学习方式的不同可以划分为有监督学习、无监督学习以及强化学习。有监督学习要求输入数据中含有导师信号,其结果通常是以函数形式表示的模型,例如贝叶斯网络、神经网络和支持向量机等。无监督学习则不包含导师信号,学习的目标是识别出数据中的结构,聚类算法是无监督学习中应用广泛的一类方法。强化学习是通过与环境交互进行学习,旨在通过奖惩机制优化决策策略。 有监督学习在分类问题中应用广泛,例如C4.5算法就是一种基于决策树的学习方法。决策树是一种流程图式的结构,通过递归分裂数据集构造模型。它易于理解和实施,适用于知识发现,但是其顺序扫描和排序数据的过程可能导致效率低下。CART算法是另一种决策树方法,它将数据集分割为具有更高一致性的子集,并通过剪枝防止过度拟合。 朴素贝叶斯算法是一种基于概率的分类方法,它假设特征之间相互独立,通过计算特征在给定类别条件下的概率来预测数据的分类。支持向量机(SVM)是一种旨在寻找最优分类超平面的算法,它适用于线性和非线性问题,并能够处理高维数据。 K近邻算法(KNN)是基于实例的学习方法,它根据最近邻的K个样本来预测新样本的分类。AdaBoost是一种集成学习方法,它通过组合多个弱分类器来形成一个强分类器。K均值算法(K-means)是一种聚类算法,它通过迭代计算将数据集分成若干类别。最大期望(EM)算法是一种迭代算法,主要用于含有隐变量的概率模型参数的估计。 Apriori算法是用于发现频繁项集的算法,它是关联规则学习的基石。Pagerank算法最初用于网页排名,它能够根据网页间的链接关系评估网页的重要性。 半监督学习结合了少量的有监督数据和大量的无监督数据,可以使用Co-training、EM、Latent variables等方法进行学习。此类学习策略能够利用未标注数据增加训练样本,减少对标注数据的依赖。 机器学习的十大经典算法涵盖了有监督、无监督以及强化学习的多种场景,它们为解决不同的数据挖掘和模式识别问题提供了丰富的工具。从决策树、概率模型到聚类分析,每种算法都有其特定的应用背景和优缺点。在实际应用中,选择合适的算法不仅需要理解算法本身的原理,还要结合具体问题的需求进行考量。
2025-09-21 14:37:59 2.84MB
1
机器学习经典算法PPT课件.ppt
2025-09-21 10:30:07 2.52MB
1
1.唐诗宋词是一种艺术,艺术具有审美价值,欣赏唐诗宋词产生的共鸣和联想,能够起到陶冶情操、净化心灵、启迪人生等各种作用; 2.唐诗宋词描写涉及的内容广泛,囊括到唐宋时期人们生活的方方面面,对于很多方面的研究都有参考价值,尤其是历史、文化的发展和传播,都有重要作用。
1
Expert One-on-One J2EE Development Without EJB中文版
2023-05-19 23:11:57 142.63MB 学习经典
1
学习经典力学的经典书籍David Morin《Introduction to Classical Mechanics: With Problems and Solutions》的课后习题答案。全!
2023-04-15 16:30:32 1.14MB 学习 经典力学
1
matlab教程 从入门到精通 matlab学习经典书籍
1
Average reward reinforcement learning Foundations algorithms and empirical results (1996):强化学习采用平均奖励目标函数
2022-10-17 17:07:24 2.14MB
1
机器学习的10大经典算法,很经典,值得一看
2022-09-23 13:00:11 536KB machine_learning 机器学习经典
强化学习 经典算法原理介绍及实践
2022-08-31 17:05:24 1.69MB 强化学习
1
Sutton强化学习经典教材及python代码,全英文,适合对强化学习有兴趣的人使用
2022-07-20 15:28:11 17.68MB 强化学习 Sutton 代码
1