本文综述了近年来在大间隔训练及其理论基础方面取得的进展,主要针对(非线性)深度神经网络(DNNs),这可能是过去十年来社区中针对大规模数据最著名的机器学习模型。我们概括了从经典研究到最新DNNs分类边界的形成,总结了间隔、网络泛化和鲁棒性之间的理论联系,并全面介绍了近年来在扩大DNNs分类间隔方面所做的努力。
2021-04-03 18:12:43 1011KB 大间隔学习
1