针对多模态图像融合中多尺度几何工具和融合规则设计困难的问题,提出一种基于生成对抗网络(GANs)的图像融合方法,实现了多模态图像端到端的自适应融合。将多模态源图像同步输入基于残差的卷积神经网络(生成网络),通过网络的自适应学习生成融合图像;将融合图像和标签图像分别送入判别网络,通过判别器的特征表示和分类识别逐渐优化生成器,在生成器和判别器的动态平衡中得到最终融合图像。与具有代表性的融合方法相比,实验结果表明,本文方法的融合结果更干净,没有伪影,提供了更好的视觉质量。
2021-10-26 16:25:39 12.19MB 图像处理 图像融合 多模态图 深度学习
1