针对模型未知的多机械臂系统,利用多个独立的RBF神经网络,对每个子机械臂系统进行逼近,基于图论原理定义了每个子系统之间的同步耦合关系,结合滑模控制方法设计出一种机械臂无模型自适应同步控制器。通过神经网络权值的不断在线迭代过程,随机械臂工作任务的变化可以实现对其动力学模型的实时逼近,摆脱了数学模型的限制,扩大了控制器的应用范围,在初始误差较大的情况下也可以保证对期望轨迹实现快速跟踪,并且系统在载荷发生改变等不确定的情况下依然能够实现同步,提高了控制器的鲁棒性。最后通过Lyapunov稳定性分析和Matlab仿真对所设计的同步控制器进行了验证。
1
针对模型未知的多机械臂系统,利用多个独立的 RBF神经网络,对每个子机械臂系统进行逼近,基于图论原理定义了每个子系统之间的同步耦合关系,结合滑模控制方法设计出一种机械臂无模型自适应同步控制器。通过神经网络权值的不断在线迭代过程,随机械臂工作任务的变化可以实现对其动力学模型的实时逼近,摆 脱 了 数学模型的限制,扩大了控制器的应用范围,在初始误差较大的情况下也可以保证对期望轨迹实现快速跟踪,并且系统在载荷发生改变等不确定的情况下依然能够实现同步,提高了控制器的鲁棒性。最 后 通 过 Lyapunov稳 定 性 分析和 Matlab仿真对所设计的同步控制器进行了验证
2021-03-22 09:08:41 1.45MB 神经网络 滑模 机械臂
1
针对存在不确定性的多机械臂系统,运用RBF神经网络,设计了一种新的滑模同步控制器,解决了多机械臂同步运动问题。根据无向图理论,定义机械臂之间的同步误差和交叉耦合误差。使用自适应律在线更新RBF神经网络权值,逼近并补偿机械臂的运动学不确定性和动力学不确定性。根据Lyapunov方法进行了稳定性分析。最后通过仿真验证了同步控制器的稳定性和有效性。
1