数字识别是扫描文档并将其转换为电子格式的过程中必不可少的元素。 在这项工作中,正在提出一种新的多像元大小(MCS)方法,以利用定向梯度直方图(HOG)特征和基于支持向量机(SVM)的分类器对手写数字进行有效分类。 基于HOG的技术对在相关特征提取计算中使用的像元大小选择很敏感。 因此,一种新的MCS方法已用于执行HOG分析和计算HOG功能。 该系统已经在基准MNIST手写数字基准数据库上进行了测试,使用独立测试集策略已达到99.36%的分类精度。 还使用10折交叉验证策略对分类系统进行了交叉验证分析,并且获得了10折分类精度为99.26%。 所提出的系统的分类性能优于使用复杂过程的现有技术,因为在特征空间和分类器空间中使用简单的操作已达到了同等或更好的结果。 该系统的混淆矩阵图和接收器工作特性(ROC)图显示了所提出的基于MCS HOG和SVM的新型数字分类系统的优越性能。
1
目前来说,显著性检测用MSRA1000基本足够,用于检测单目标算法的准确率和召回率,之后有扩充的MSRA10K,该数据集已公开。
2021-04-25 18:35:04 23.93MB saliency 基准数据库 MSRA1K
1