基于Python+OpenCV的手势识别系统:智能家居控制、智能小车驱动与亮度调节的智能交互体验,Python+OpenCV手势识别系统:智能家居与智能小车控制利器,基于SVM模型和肤色识别技术,基于python+opencv的手势识别系统,可控制灯的亮度,智能家居,智能小车。 基于python+opencv的手势识别系统软件。 内含svm模型,和肤色识别,锐化处理。 基于 win10+Python3.7的环境,利用Python的OpenCV、Sklearn和PyQt5等库搭建了一个较为完整的手势识别系统,用于识别日常生活中1-10的静态手势。 完美运行 ,基于Python+OpenCV的手势识别系统; SVM模型; 肤色识别; 锐化处理; 智能家居控制; 智能小车控制; 灯的亮度调节。,Python+OpenCV的智能家居手势控制系统,实现灯光与智能小车控制
2025-05-09 16:43:38 840KB 开发语言
1
支持向量机(Support Vector Machine, SVM)是一种监督学习模型,尤其在模式识别和回归分析领域表现出色。在本主题中,"SVM识别基于SVM的滚动轴承故障状态识别方法",我们主要探讨如何利用SVM技术来诊断滚动轴承的健康状况。 滚动轴承是机械设备中的关键组件,其故障可能导致设备性能下降甚至严重损坏。因此,早期发现并识别滚动轴承的故障状态至关重要。SVM通过构建最优分类超平面,能够有效地处理小样本、非线性和高维数据,这使得它成为滚动轴承故障识别的理想工具。 在实际应用中,首先需要收集滚动轴承的振动信号数据。这些数据通常由传感器捕获,包含了轴承的状态信息。然后,通过预处理步骤(如滤波、降噪和特征提取)将原始信号转化为可用于分析的特征向量。常用的特征包括时域特征(如均值、方差、峭度等)、频域特征(如峰值、能量谱、峭度谱等)以及时间-频率域特征(如小波分析或短时傅里叶变换)。 接下来,我们将这些特征向量输入到SVM模型中进行训练。SVM的核心在于寻找最大边距的分类边界,即最大化正常状态与故障状态样本之间的间隔。这个过程涉及到选择合适的核函数,例如线性核、多项式核、高斯核(RBF)等。RBF核通常在非线性问题中表现优秀,适合复杂的故障模式识别。 在训练完成后,我们可以用该模型对新的振动信号进行预测,判断滚动轴承是否处于故障状态。为了评估模型的性能,通常会采用交叉验证、混淆矩阵、准确率、召回率、F1分数等指标。此外,针对多类故障识别,可能还需要采用一对多或多对多的策略。 MATLAB是一个广泛用于SVM建模的平台,提供了完善的工具箱和函数支持。用户可以通过调用`svmtrain`和`svmpredict`函数实现SVM的训练和预测。在文件"5.6SVM"中,可能包含了使用MATLAB实现SVM滚动轴承故障识别的代码示例、数据集以及结果分析。 基于SVM的滚动轴承故障状态识别方法通过高效的数据处理和模式识别,为机械系统的健康管理提供了一种有效手段。它不仅可以预防不必要的停机和维修成本,还能提高整体设备的可靠性和生产效率。随着深度学习和大数据技术的发展,SVM与其他先进技术的结合有望进一步提升故障识别的精度和实时性。
2025-04-16 15:55:11 53.9MB 支持向量机 故障识别 滚动轴承
1
基于SVM 的鼾声识别算法.7z 使用SVM分类算法对鼾声进行识别 数据集采用Snoring Data Set 特征提取采用librosa中的Mel Spectrogram计算方法,C++版LibrosaCpp实现 数据集 数据集包含1000个样本,其中包含500个鼾声样本和500个非鼾声样本 特征提取 使用librosa库中的Mel Spectrogram计算方法和短时傅里叶变换(Short-Time Fourier Transform)构造出35维特征向量进行训练 频率:对能量的取值进行分段,取其中的众数作为频率的估计值 平均响度: 首先,你需要获取音频数据的每个样本值 对每个样本值进行平方,得到其能量 对所有样本的能量求平均值,然后取平方根,即为均方根(RMS)值 RMS值可以作为该段音频的平均声音响度的估计。 单次持续时间:单次鼾声持续时间 时域能量:在时域中,音频的能量可以通过信号的振幅平方来表示。对于每个时间窗口,将窗口内的每个样本的振幅平方求和,即可得到该时间窗口的能量值。这可以用来表示音频信号随时间的能量分布 短时傅里叶变换(Short-Time Fourie
2024-07-16 22:38:13 5.25MB 支持向量机
1
资源包含4个文件,其中.m和.npy为模型文件,其余两个是jupyter格式的python文件,如果没有jupyter可以用记事本或是vs code打开,再粘到py文件中运行 代码详解可见博客:https://blog.csdn.net/weixin_42486554/article/details/103732613
2024-04-23 11:16:00 375KB 支持向量机 kmeans 图像分类
1
首先基于特征融合思想,采用氨基酸组成、熵密度和自相关系数结合的方式构建 190 维特征向量进行特.征表达,与仅考虑氨基酸组成信息的传统方法相比,能更好地表达蛋白质结构信息。然后利用 LDA(Linear .Discriminant Analysis)方法进行降维,降低计算复杂性,加强同类样本间的相关性。接下来选用支持向量机作为.分类器进行定位预测,最后采用留一法在 Gram-negative 和 Gram-positive 数据集上进行交叉检验。实验结果表明,.多特征结合的方法优于传统的氨基酸组成方法和简单的自相关系数方法,证明了新方法的有效性。
2024-03-23 08:48:32 414KB
1
鉴于传统单一预测对非平稳信号处理不佳且滤波不足、预测精度不够等缺点,提出基于SVM-Wavelet组合算法对通风机进行故障预测,运用小波进行信号滤波和特征提取,结合SVM训练样本建立模型,最终在与Matlab无缝连接的Lab VIEW上位机软件中实现模型预测。
2024-02-27 12:08:27 1.01MB 故障预测 SVM-Wavelet LabVIEW
1
基于SVM的人脸识别程序 用MATLAB编写 简单易懂
2024-01-23 11:12:00 604KB 人脸识别
1
MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost多输入分类预测 基本介绍 1.MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost多输入分类预测; 2.运行环境为Matlab2018b; 3.输入多个特征,分四类预测; 4.data为数据集,excel数据,前多列输入,最后输出四类标签,主程序运行即可,所有文件放在一个文件夹; 5.可视化展示分类准确率。 模型描述 SVM-Adaboost支持向量机结合AdaBoost多输入分类预测是一种基于机器学习和集成学习的预测方法,其主要思想是将支持向量机(SVM)和AdaBoost算法相结合,通过多输入模型进行预测。 具体流程如下: 数据预处理:对原始数据进行清洗、归一化和分割等预处理步骤。 特征提取:利用SVM模型对数据进行特征提取,得到多个特征向量作为AdaBoost算法的输入。 AdaBoost模型训练:利用AdaBoost算法对多个特征向量进行加权组合,得到最终的预测结果。 模型评估:对预测结果进行评估。 模型优化:根据评估结果对模型进行优化,可以尝试调整模型的参数、改变AdaBoos
2023-12-11 12:48:07 1KB matlab 支持向量机
1
本文实例为大家分享了SVM手写数字识别功能的具体代码,供大家参考,具体内容如下 1、SVM手写数字识别 识别步骤: (1)样本图像的准备。 (2)图像尺寸标准化:将图像大小都标准化为8*8大小。 (3)读取未知样本图像,提取图像特征,生成图像特征组。 (4)将未知测试样本图像特征组送入SVM进行测试,将测试的结果输出。 识别代码: #!/usr/bin/env python import numpy as np import mlpy import cv2 print 'loading ...' def getnumc(fn): '''返回数字特征''' fnimg = cv2.i
2023-11-06 16:33:05 144KB python python算法
1
matlab19 基于SVM的手写字体识别
2023-04-20 09:49:41 125KB
1