python朴素贝叶斯垃圾邮件分类与检测系统+可视化 毕业设计(包含文档+源码+部署教程)Django框架
为了解决垃圾邮件导致邮件通信质量被污染、占用邮箱存储空间、伪装正常邮件进行钓鱼或诈骗以及邮件分类问题。应用Python、Sklearn、Echarts技术和Flask、Lay-UI框架,使用MySQL作为系统数据库,设计并实现了基于朴素贝叶斯算法的邮件分类系统,并以Web形式部署在本地计算机。运用Sklearn库对KNN算法、SVM算法和朴素贝叶斯算法进行建模和训练,将训练结果进行分析和对比得出朴素贝叶斯算法在准确率、召回率和精确率三个指标下比其他分类算法更适合邮件分类,因此选择朴素贝叶斯算法作为系统核心算法。系统功能包括邮件检测与数据管理两大核心模块,邮件检测模块,采用基于朴素贝叶斯算法,使用TF-IDF算法对邮件进行特征提取并将邮件内容以及检测结果存储于MySQL数据库,存储到MySQL中的数据将用于数据管理模块;数据管理模块包括数据存储、数据分析、数据可视化。系统采用黑盒测试方法对两个模块进行功能性测试,测试结果符合预期。系统满足设计基本需求,能安全、稳定和可靠地运行。
1