双向电平转换电路设计与实现 双向电平转换电路是指在不同的电平之间进行转换的电路,例如1.8V到3.3V或反之。这种电路在数字电路设计中非常常见,特别是在不同电压的器件之间进行通信时。下面我们将讨论多种1.8V-3.3V双向电平转换电路的设计与实现。 一、N-MOS方案 N-MOS方案是使用N沟道MOSFET来实现电平转换的。如图所示,电路中使用了TPM2102B/WNM2021-3芯片作为N-MOS管。该电路的工作原理是利用MOSFET的导通和截止状态来实现电平转换。 当输入电平为1.8V时,MOSFET导通,输出电平为3.3V;当输入电平为3.3V时,MOSFET截止,输出电平为1.8V。 二、NPN方案 NPN方案是使用NPN三极管来实现电平转换的。如图所示,电路中使用了Q112SC4617TLQ/9013芯片作为NPN三极管。该电路的工作原理是利用三极管的放大和截止状态来实现电平转换。 当输入电平为1.8V时,三极管放大,输出电平为3.3V;当输入电平为3.3V时,三极管截止,输出电平为1.8V。 三、电阻二极管方案 电阻二极管方案是使用电阻和二极管来实现电平转换的。如图所示,电路中使用了R1210KR134.7K和D21N4148芯片。该电路的工作原理是利用电阻的分压和二极管的导通状态来实现电平转换。 当输入电平为1.8V时,电阻分压使输出电平为3.3V;当输入电平为3.3V时,二极管导通,输出电平为1.8V。 四、双向电平转换电路设计要点 在设计双向电平转换电路时,需要考虑以下几点: 1. 电压转换范围:电路需要能够在不同的电压范围内进行转换。 2. 转换速度:电路需要能够快速地进行电平转换。 3. 信号完整性:电路需要能够保持信号的完整性,不会出现信号失真或畸变。 4. 电路可靠性:电路需要能够在不同的环境条件下稳定工作。 五、结论 本文讨论了多种1.8V-3.3V双向电平转换电路的设计与实现,包括N-MOS方案、NPN方案和电阻二极管方案。这些方案各有其优缺,选择哪种方案取决于具体的应用场景和要求。同时,设计双向电平转换电路需要考虑电压转换范围、转换速度、信号完整性和电路可靠性等因素。
2025-11-14 16:25:57 64KB 电平转换电路 双向电平转换电路
1
由于Arduino基本上是5V电源供电,大多数现代传感器,显示器,闪存卡和模式仅为3.3V,许多制造商发现他们需要进行电平转换/转换,以保护3.3V器件免受5V。于是使用电阻来制造分压器,但是为了进行高速传输,电阻器可能会增加大量的电压,从而造成严重破坏,这很难进行调试。因此,设计了TXB0108-8通道双向逻辑电平转换器实现电平转换。TXB0108-8通道双向逻辑电平转换器电路板实物截图: TXB0108双向电平转换器执行几乎任何电压间双向电平转换,并将自动检测方向。只有这个芯片不能正常工作的是i2c(因为它使用强大的上拉,这会混淆自动方向传感器)。如果您需要使用上拉电阻,您可以将它们至少为50K欧姆,AVR / Arduino的内部电阻约为100K欧姆,这样就可以了! 由于该TXB0108芯片是一个特殊的双向电平转换器,它没有强大的输出引脚可以驱动LED或长电缆,它的意图是坐在两块逻辑芯片之间的面包板上!如果您不需要即时双向支持,我们建议以下具有强大输出驱动的74LVX245。 TXB0108-8通道双向逻辑电平转换器电路 PCB截图,见附件下载其工程文件:
1