本系统通过目标检测算法使得系统可以通过图片识别一个或多个垃圾并对其进行分类,相较于传统的图片分类算法,允许用户同时识别多种垃圾;通过基于深度学习算法的文本分析使得系统能够充分理解各种物体名称的具体含义,以便于通过用户输入的名称对垃圾种类进行分类。 二、系统说明 2.1 功能介绍 图片垃圾分类:系统能够对图片中的多个物体进行检测并进行垃圾分类,最终返回待分类垃圾的物体名称以及其所属的垃圾类别。 文本垃圾分类:系统在对接收到的文本进行检测后,会返回待分类垃圾所属的垃圾类别。 2.2 数据介绍 图片数据集:图片识别类来自2019华为云垃圾分类挑战赛、爬虫搜集,共两万余张图片,91类物体;目标检测类为COCO数据集。 文本数据集:爬虫搜集,共3000类物体名称(其中有相似的,例如电池和干电池) 由于数据集过大,因此不会上传,如有需要可以在issue中提出。 2.3. 模型介绍(v1.0版本) 目标检测模型使用谷歌Object-Detection中的SSD模型、图片识别模型使用Inception-Resnet-v2模型。 文本分类模型使用两层双向LSTM与两层一维卷积模型,其中词向量层使用了
2022-05-09 11:04:27 77.94MB python
针对语音卷积盲源分离频域法排列顺序不确定性问题,提出一种多频段能量排序算法。通过对混合信号的短时傅里叶变换(STFT),在频域上各个频点建立一个瞬时混合模型进行独立分量分析,之后结合能量相关排序法和波达方向(DOA)排序法解决排序不确定性问题,再利用分裂语谱方法解决幅度不确定性问题,进而得到每个频点正确的分离子信号,最后利用逆短时傅里叶(ISTFT)变换得到分离的源信号。仿真结果表明,与Murata的排序算法对比,改进的算法在信号偏差比、信道干扰比、系统误差比上都所提高。
1
频域卷积混合盲源分离,可作为实验平台使用。包括短时傅里叶变换及逆变换,复数ICA,解决排列歧义性的算法,算法性能评价等内容。
2019-12-21 20:22:27 6.36MB 盲源分离
1
直接运行Demo文件即可,本算法案例是两源信号卷积混合,基于同一信号相邻频点能量相关的方法对频域盲源分离信号进行排序
2019-12-21 19:46:49 10KB 卷积混合 基于能量排序
1