迁移学习在深度学习中是经常被使用的方法,指的是在一个任务中预训练的模型被用于另一个任务的模型训练,以加快模型训练,减少资源消耗。 然而网络搜索相关的话题,基本上只涉及加载预训练模型的特定变量值的方法,即不涉及预训练模型某个变量与当前任务网络对应变量shape改变的处理。 在具体的语音合成多说话人模型迁移学习得到单说话人模型的任务中,就涉及到了迁移变量改变shape的情况,将解决方法如下列出。 文章目录一. 问题来源二. 相关接口三. 解决方法 一. 问题来源        语音合成多说话人模型迁移学习得到单说话人模型的任务中,涉及了迁移变量改变shape的情况。        一个不可避免的是
2022-05-09 11:04:42 65KB al ens fl
1
使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。这时候我们需要掌握如何操作这些模型数据。看完本文,相信你一定会有收获! 1 Tensorflow模型文件 我们在checkpoint_dir目录下保存的文件结构如下: |--checkpoint_dir | |--checkpoint | |--MyModel.meta | |--MyModel.data-00000-of-00001 | |--MyModel.index 1.1 meta文件 MyModel.meta文件保存的是图结构,meta文件是pb(pr
2022-01-27 18:12:46 69KB checkpoint fl flow
1
今天小编就为大家分享一篇Tensorflow加载预训练模型和保存模型的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2021-12-02 16:11:49 68KB Tensorflow 预训练 保存 模型
1
今天小编就为大家分享一篇PyTorch加载预训练模型实例(pretrained),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2021-11-05 16:56:15 29KB PyTorch 预训练 模型 pretrained
1
在解决一个任务时,我会选择加载预训练模型并逐步fine-tune。比如,分类任务中,优异的深度学习网络有很多。 ResNet, VGG, Xception等等… 并且这些模型参数已经在imagenet数据集中训练的很好了,可以直接拿过来用。 根据自己的任务,训练一下最后的分类层即可得到比较好的结果。此时,就需要“冻结”预训练模型的所有层,即这些层的权重永不会更新。 以Xception为例: 加载预训练模型: from tensorflow.python.keras.applications import Xception model = Sequential() model.add(Xcep
2021-09-14 09:46:10 153KB AS keras ras
1
主要介绍了Keras 实现加载预训练模型并冻结网络的层,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2021-03-27 11:00:14 148KB Keras 加载预训练 冻结网络层
1