LM4871是一个很不错的功放芯片,在插卡音箱上,大多使用的都是这个功放片子, 我绘制了这个芯片的原理图和PCB文件。 发出来供大家使用。 做的单面PCB,非常适合自制! 插卡音箱功放板原理图、PCB截图:
2025-08-15 22:37:09 1.18MB diy制作 插卡音箱
1
BLF571 是 NXP(恩智浦)推出的一款 LDMOS 射频功率晶体管,以下是它的详细介绍4: 基本信息 器件类别:分立半导体晶体管 封装形式:FLANGE MOUNT,R-CDFM-F2,具体型号为 SOT467C 针数:3 极性 / 信道类型:N-CHANNEL 是否符合 RoHS 认证:符合 电气性能 工作频率:主要工作在 HF(高频)和 VHF(甚高频)频段,设计用于 10MHz-500MHz 的宽带操作,典型测试频率为 225MHz。 电源电压:典型测试条件下为 50V,漏源击穿电压最小值为 110V。 输出功率:在 225MHz、50V 供电、50mA 静态电流条件下,平均输出功率为 20W。 功率增益:在上述条件下,功率增益为 27.5dB。 效率:在典型测试条件下,效率可达 70%。 最大漏极电流:3.6A 特性 易功率控制:能方便地实现对功率的控制和调节,满足不同应用场景下的功率需求。 集成 ESD 保护:内置静电放电保护功能,可增强器件在使用过程中的可靠性,减少因静电而导致的损坏风险。 高坚固性:具有较强的抗干扰和抗损坏能力,能够在较为恶劣的工作环境下稳定工作。
2025-07-14 17:57:41 2.48MB 射频电路 功率放大器
1
MW6S010N 是飞思卡尔(Freescale)推出的一款射频场效应晶体管(RF FET),以下是关于它的介绍6: 基本信息 类别:RF FET 晶体管类型:LDMOS 封装形式:TO-270AA 频率:960MHz 电压额定:68V 增益:18dB 功率输出:10W 测试电流:125mA 额定电流:10µA 应用领域 无线通信:可用于 800MHz-1000MHz 频段的功率放大器设计,提升信号强度和传输距离,确保基站与移动终端之间的稳定通信。 射频测试设备:为测试仪器提供稳定的射频信号源,保证测试结果的准确性和可靠性。 雷达系统:用于发射高功率射频信号,有助于提高雷达的探测距离和精度。
2025-07-14 17:55:25 236KB 射频电路 功率放大器
1
### 用ADS进行宽带微波功放的仿真设计 #### 引言 现代通信对抗系统中,宽带微波功率放大器(以下简称“宽带功放”)的应用日益广泛。这类放大器通常要求具备较宽的工作频带(至少一个倍频程以上),以及较高的输出功率(从几十瓦至数百瓦)。然而,国内对于此类宽带功放的设计与研发仍处于初级阶段。相比之下,西方国家在这一领域已拥有较为成熟的技术和产品。例如,OPHIR公司和PST公司均推出了工作在1-2GHz频段、输出功率达100W甚至200W的产品。目前国内市场上的宽带功放大多依赖进口,不仅价格昂贵,且存在供应不稳定的风险。因此,发展自主设计能力显得尤为重要。 #### ADS技术在宽带微波功放设计中的应用 为了克服宽带功放设计中的技术挑战,本文介绍了一种利用高级设计系统(Advanced Design System,简称ADS)进行宽带微波功放模块设计的方法。ADS是一款强大的微波电路仿真软件,能够支持从电路级到系统级的全方位设计和仿真。下面将详细介绍如何使用ADS技术实现宽带功放的设计。 #### 设计步骤 1. **器件选择**:需选择合适的微波单电子晶体管(MESFET)作为放大器的核心元件。由于市场上可用的功放管型号有限,尤其是高性能的定制型号更为稀缺,因此设计师需要根据现有资源进行合理选择。 2. **器件建模**:获取所选MESFET功放管的静态IV特性和小信号s参数,用于建立器件模型。这些参数对于后续的电路优化至关重要。 3. **匹配网络设计**:基于器件模型,利用ADS的优化工具设计输入输出匹配网络。目标是使放大器在整个工作频带上实现最大输出功率和最小端口反射系数。此步骤通常需要多次迭代以达到最佳性能。 4. **非线性仿真**:虽然理想情况下应使用大信号模型进行非线性仿真,但在实际操作中往往只能获得小信号模型。此时,可以采用逐级优化的方法,先确保匹配网络满足基本的性能指标,再通过调整关键参数来改善非线性失真和互调产物。 5. **整体电路仿真与优化**:完成匹配网络的设计后,进行整个电路的仿真。这包括检查增益平坦度、噪声系数等关键性能指标是否满足要求。如果有必要,还需进一步调整匹配网络或器件参数。 6. **实物验证**:最终设计完成后,制作实物原型并进行测试验证。通过对比仿真结果与实际测试数据,评估设计的有效性,并据此进行必要的调整。 #### 结论与展望 本文提出了一种利用ADS技术设计宽带微波功放模块的方法,并通过一个1-2GHz频段、输出功率为10W的功放模块设计实例进行了具体阐述。这种方法不仅有助于提高宽带功放的设计效率,还能有效降低成本。随着国内科研人员对该技术的不断探索与实践,相信未来在宽带微波功放的设计领域将取得更多突破性进展。 ### 关键词 - ADS技术 - MESFET功放管 - 宽带功率放大器
2025-05-30 15:35:00 297KB
1
MW6S010N 是一款 ​​N沟道增强型 MOSFET​​,主要应用于高效电源管理和功率开关场景。以下是其关键特性及应用的详细介绍: ​​主要参数​​ ​​电压与电流​​ ​​漏源电压 (VDS)​​:通常为 ​​100V​​(具体以数据手册为准),适合中高压应用。 ​​连续漏极电流 (ID)​​:可达 ​​数十安培​​(如 40A),支持大电流负载。 ​​栅源电压 (VGS)​​:典型值为 ±20V,兼容标准逻辑电平驱动。 ​​导通电阻 (RDS(on))​​ 在典型栅极电压(VGS=10V)下,RDS(on) 可能低至 ​​mΩ级​​(如 8mΩ),有助于降低导通损耗,提升效率。 ​​开关特性​​ 快速开关速度(低上升/下降时间),适用于高频开关电路(如 DC-DC 转换器、逆变器)。 ​​封装​​ 常见封装为 ​​DFN(双扁平无引脚)​​ 或 ​​TO-252​​,提供良好的散热性能与紧凑尺寸。
2025-05-29 13:55:13 21.69MB 射频电路 功率放大器 ADS模型
1
### Doherty功率放大器研究与设计 #### Doherty功率放大器原理及设计要点 Doherty功率放大器作为一种高效、高性能的功率放大技术,在现代无线通信领域扮演着极其重要的角色。尤其对于高线性度和高效率要求的应用场景,如WCDMA基站等,Doherty技术的应用更是不可或缺。 ##### 1. Doherty功率放大器原理概述 Doherty功率放大器的基本结构由两个功率放大器组成:主放大器和辅助放大器。其中,主放大器通常工作在B类或AB类模式,而辅助放大器则工作在C类模式。这种结构的特点在于,当输入信号较小时,仅主放大器处于工作状态;随着输入信号增加,到达设定阈值后,辅助放大器开始参与工作,从而实现了在整个动态范围内保持较高的效率。 - **主放大器**:负责处理大部分的信号功率,并通过90°四分之一波长线实现阻抗变换,以确保在辅助放大器工作时能够降低视在阻抗。 - **辅助放大器**:在特定条件下激活,通过提供额外的功率支持来进一步提升整体系统的输出功率。辅助放大器的加入使得主放大器的负载降低,进而能够在主放大器输出电压饱和的情况下,通过增加流过负载的电流来提高输出功率。 这种独特的设计使得Doherty功率放大器能够在回退状态下仍保持较高的效率,尤其是在峰值功率的一半左右时达到最佳效率点。 ##### 2. Doherty功率放大器的设计流程 设计一款性能优异的Doherty功率放大器,需要经历以下步骤: - **选择合适的元件**:根据设计指标(例如额定功率30W,输出增益50dB,工作频率2110~2170MHz等),选择适合的功率放大器。本案例中选择了摩托罗拉的LDMOS管MRF21060作为核心元件,该管件在最大功率工作时的总功率可达120W,回退至30W时仍能保持高效率。 - **确定静态工作点**:为了实现Doherty结构的功能,需要分别设置主放大器和辅助放大器的工作点。主放大器通常工作在AB类模式,而辅助放大器则工作在C类模式。通过静态工作点扫描,选定合适的偏置条件以满足Doherty技术的要求。 - **阻抗匹配设计**:通过精确的阻抗匹配网络设计,确保放大器能够在所需的频率范围内高效运行。这一过程包括主放大器和辅助放大器之间的匹配,以及它们与外部负载之间的匹配。 - **90°合路器设计**:设计90°相位移合路器以确保两个放大器输出信号的同相叠加。这是实现Doherty结构的关键组成部分之一,对于维持系统的整体性能至关重要。 Doherty功率放大器的设计涉及多个关键步骤和技术要点,通过合理选择元件、精细调整工作点并优化匹配网络,可以实现既高效率又高线性度的目标。这一技术在现代通信系统中展现出巨大的潜力和应用价值,特别是在追求高效率和高性能的无线通信领域。
2024-09-03 10:12:15 162KB Doherty功放
1
电子设计大赛相关的资源。 如果您觉得这些免费资源对您有帮助的话,我会非常感谢您的支持,您可以考虑给我点赞或关注,这将是对我分享内容的一种鼓励,也会让我更有动力继续分享更多有价值的资源。非常感谢您的关注和支持!
2024-05-11 10:39:49 1.01MB 电子设计大赛
1
功放进入了数字时代。数字功放的关键部分集成电路已经达到了较高水准,如TDA7482数字功放有效地降低了信号间的干扰、可实现高保真。虽然核心技术解决了,但印制线路板(PCB)布线不当,也很难达到理想的效果。笔者在TDA7482数字功放的PCB设计过程中总结了一点经验,现就PCB设计应遵守的布线原则及抗干扰设计要求与电磁兼容性要求作简要分析介绍。   1、数字功放的概况及发展 数字功放的基本电路是早已存在的D类放大器(国内称丁类放大器)。以前,由于价格和技术上的原因,这种放大电路只是在实验室或高价位的测试仪器中应用。这几年的技术发展使数字功放的元件集成到一两块芯片中,价格也在不断下降。理论证明,D类放大器的效率可达到100%。然而,迄今还没有找到理想的开关元件,难免会产生一部分功率损耗,如果使用的器件不良,损耗就会更大些。但是不管怎样,它的放大效率还是达到90%以上。此外,数字功放具有失真小、噪音低、动态范围大等特点,在音质的透明度、解析力,背景的宁静、低频的震撼力度方面是传统功放不可比拟的。数字功放和DC一DC开关型逆变电路类似。输入的音频模拟信号经过PWM电路调制处理后,形成占空比同输入信号成一定比例的脉冲链,经过开关电路放大后,由低通滤波器滤除高频成分,还原出已放大的输入信号波形,由扬声器放音。
2024-05-11 10:34:20 3.71MB
1
音频功放电路图TA7232P
2024-04-13 20:49:48 20KB
1
电子管功放 300B_2A3电子管功放的制作资料合集 电子管功放 300B_2A3电子管功放的制作资料合集
2024-02-06 03:17:52 16.39MB
1