yolov5/yolov8/yolo11/yolo目标检测数据集,光伏面板红外图像热斑缺陷检测数据集,12736张标注好的数据集(3类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用 3个类别:金色斑点、浅金色斑点、阴影。 图像分辨率为大分辨率RGB图片。 效果参考展示:https://blog.csdn.net/m0_37302966/article/details/151869402 更多资源下载:https://blog.csdn.net/m0_37302966/article/details/146555773
2025-11-10 17:10:10 721.34MB yolov5数据集 yolo数据集
1
微信小程序最新省市区数据sql文件下载,最新整理的,绝对真实有效!,微信小程序picker组件中mode='region'中使用的数据。
2025-11-01 22:43:09 297KB 省市地区 行政区域划分
1
yolov5/yolov8/yolo11/yolo目标检测数据集,人爬墙识别数据集及训练结果(含yolov8训练结果与模型),1016张标注好的数据集(2类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用 2个类别:没爬墙,在爬墙。 效果参考展示:https://blog.csdn.net/m0_37302966/article/details/151864777 更多资源下载:https://blog.csdn.net/m0_37302966/article/details/146555773
2025-10-30 17:10:49 122.32MB yolov5数据集 yolo数据集
1
starccm+电池包热管理-新能源汽车电池包共轭传热仿真-电池包热管理 可学习模型如何搭建,几何清理网格划分,学习重要分析参数如何设置。 内容: 0.电池包热管理基础知识讲解,电芯发热机理,电池热管理系统介绍等 1:三维数模的几何清理,电芯,导热硅胶,铜排,端板,busbar,水冷板的提取(几何拓扑关系调整),为面网格划分做准备 2.设置合适的网格尺寸,进行面网格划分 3.体网格生成:设置边界层网格、拉伸层网格、管壁薄层网格、多面体网格 4.设置不同域耦合面interface(电芯与冷板、电芯与导热硅胶、管道流体域与管道固体域、导热硅胶固体域与冷板固体域等) 5.关键传热系数的设置如接触热阻,导热率等。 (赠送实验室测电芯自然对流换热系数方法的说明ppt) 6.计算参数设置(瞬态与稳态分析对电池包仿真的适用性等) 物理模型选择,求解器参数设定。 7. 根据实际控制策略,计算电池不同工况的发热量参数 电芯发热功率,OCV,DEDT的精确计算方法 8.基于不同整车行驶工况,如爬坡、低速行驶,电池包温度场后处理分析 9.电池包热失控及热蔓延过程仿真分析 10.有一份电池包热管理仿真的核心
2025-10-22 13:46:34 487KB
1
内容概要:本文详细介绍了基于SCDM FM Fluent和ICEM软件的无人机螺旋桨特性分析及网格划分全流程。首先,在SCDM中进行模型简化、修复和多计算域创建,确保模型适用于流体动力学分析。接着,利用Fluent Meshing进行高质量的网格划分,特别是针对螺旋桨附近的附面层网格进行了精细化处理。然后,在Fluent中设置计算域并进行仿真,提取整机和各部分的升力、阻力、俯仰力矩、螺旋桨的拉力、扭矩等关键数据。随后,使用CFD-POST进行后处理,通过云图等可视化手段展示仿真结果,分析螺旋桨滑流对全机的影响。最后,新增了ICEM软件的网格划分模块,重点讲解了几何拓扑的检查与修复,不同网格划分方法及其注意事项。通过这一系列操作,最终得到了可用于指导无人机螺旋桨选型和动力系统效率优化的仿真结果。 适合人群:从事无人机设计、流体力学仿真分析的技术人员,尤其是希望深入了解螺旋桨特性分析及网格划分的专业人士。 使用场景及目标:① 掌握无人机螺旋桨特性分析的完整流程;② 提高网格划分的精度和效率;③ 利用仿真结果优化无人机设计和动力系统配置。 其他说明:本文不仅涵盖了理论知识,还提供了实际操作步骤,使读者能够快速上手并应用于实际项目中。
2025-10-20 18:28:20 1.41MB
1
关于更新全国统计用区划代码和城乡划分代码的公告   为更好满足2020年常规统计调查和专项调查的需要,国家统计局组织开展了2019年度统计用区划代码和城乡划分代码更新维护工作,调查时点为2019年10月31日。目前,已完成更新维护工作,现予公布。   2019年统计用区划代码和城乡划分代码依据国务院批复同意的《关于统计上划分城乡的规定》(国函〔2008〕60号)及国家统计局印发的《统计用区划代码和城乡划分代码编制规则》(国统字〔2009〕91号)编制。   此次发布内容为2019年全国统计用区划代码(12位)和城乡分类代码(3位),地域范围为国家统计局开展统计调查的全国31个省、自治区、直辖市,未包括我国台湾省、香港特别行政区、澳门特别行政区。   《关于统计上划分城乡的规定》指出:“本规定作为统计上划分城乡的依据,不改变现有的行政区划、隶属关系、管理权限和机构编制,以及土地规划、城乡规划等有关规定”。统计用区划代码和城乡划分代码,在统计工作中应当使用,需要在其他工作中使用时,请务必结合有关实际情况。
2025-09-24 15:16:04 66.48MB 五级区划 区划代码 城乡划分代码 2019
1
2018年统计用区划代码和城乡划分代码(截止2018年10月31日) 起始网址:http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2018/index.html
2025-09-23 21:33:18 53.85MB 区划代码
1
内容概要:本文详细介绍了声表面波(SAW)谐振器与滤波器器件的COMSOL有限元仿真建模方法及其掩膜板绘制技巧。首先,针对压电材料的选择与参数设定进行了深入探讨,强调了正确设置各向异性参数的重要性。接着,讨论了网格划分策略,指出在叉指电极边缘进行精细的边界层划分可以显著提高仿真的准确性。此外,还提供了频率扫描的具体操作步骤,解释了如何利用参数化本征频率求解来优化仿真效果。对于掩膜板绘制,则推荐使用Python脚本生成GDSII文件的方法,并提醒注意电极边缘的特殊处理。最后,在工艺流程设计方面,特别提到了光刻胶厚度与声速匹配的重要性,以及溅射铝膜时需要关注的晶向问题。 适用人群:从事声表面波器件研究与开发的专业人士,尤其是那些希望深入了解COMSOL仿真技术和掩膜板制作细节的研究人员和技术人员。 使用场景及目标:适用于需要进行SAW器件仿真建模和掩膜板设计的工作环境。主要目标是帮助用户掌握从材料选择、网格划分、频率扫描到掩膜板绘制等一系列关键技术环节的操作方法,从而能够独立完成高质量的SAW器件仿真和制造。 其他说明:文中不仅提供了详细的理论讲解和技术指导,还分享了许多实际操作中的经验和教训,有助于避免常见的错误并提高工作效率。同时,对于一些难以复现的实验现象,提出了通过参数扫描进行全面排查的有效解决方案。
2025-09-15 13:07:36 559KB COMSOL 网格划分
1
车辆主动避撞时,横向紧急转向避撞和纵向紧急制动避撞,临界纵向安全距离对比,可根据此安全距离划分进行模式划分,什么情况下采用紧急制动避撞,什么情况下采用紧急转向避撞,横向紧急转向避撞安全距离根据五次多项式道轨迹求解得到。 注意本为程序,提供对应的参考资料。 本程序设置前车宽度为2m ,路面附着系数为0.9,绘图程序50行。 在当前的汽车技术研究中,车辆主动避撞技术是一个重要的研究领域,它通过采取一系列的技术手段和策略,以提高行车安全,减少交通事故。主动避撞技术的核心在于车辆在面临潜在碰撞危险时,能够自动采取紧急避撞措施,而其中最关键的两种策略就是横向紧急转向避撞和纵向紧急制动避撞。这两者在实际应用中的选择标准和临界安全距离是本研究的重点内容。 研究显示,横向紧急转向避撞和纵向紧急制动避撞在不同的路况和车况下,其临界纵向安全距离存在差异。这主要是因为两者的作用机理、反应时间和制动距离不同。例如,纵向紧急制动避撞主要是通过车辆的制动系统实现减速,其制动距离受到车速、路面状况以及车辆制动系统性能的影响。而横向紧急转向避撞则需要考虑转向系统的响应速度以及车辆在转向过程中的稳定性。 在安全距离的计算上,可以根据五次多项式轨迹模型来求解横向紧急转向避撞的安全距离。五次多项式模型能够较好地拟合车辆在紧急转向过程中的运动轨迹,从而为车辆主动避撞提供一个理论上的参考模型。通过这个模型,可以模拟和计算在特定速度和转向条件下,车辆能够安全避让的距离,进而确定在不同情况下的避撞模式选择。 在实现方面,程序的编写是不可或缺的一环。本研究提供的程序设定了前车宽度为2米,路面附着系数为0.9,这为模拟和计算提供了参数基础。此外,还强调了绘图程序的重要性,通过图形展示数据结果,使得研究更加直观易懂。 从提供的文件信息来看,车辆主动避撞的研究包含了理论分析、技术实现、安全距离模型的建立以及案例分析等多个方面。其中,"车辆主动避撞技术分析概述随着汽车技术的发展车"和"车辆主动避撞技术分析与实现摘要"文档可能提供了这一研究领域的概览和初步研究结果。而"车辆主动避撞中的临界纵向安全"、"车辆主动避撞时横向紧急"等文档则可能更深入地探讨了临界安全距离的计算和避撞策略的选择。"车辆避撞系统研究主动避撞策略及安全距离模型一引言"文档则可能是对整个避撞系统研究的引言部分,概述了研究的背景和意义。 此外,"车辆主动避撞关键技术研究与临界安全"文档可能着重于探讨实现车辆主动避撞的关键技术,以及如何通过这些技术来确定临界安全距离。"1.jpg"到"4.jpg"这些图片文件可能包含了研究中的关键图像或数据图表,提供了研究结果的视觉表达。这些文件共同构成了对车辆主动避撞技术深入研究的文献基础,为理解该技术提供了丰富的信息。 车辆主动避撞技术的研究涉及了多个关键领域,包括但不限于紧急避撞策略的选择、临界安全距离的计算、技术实现方法以及案例分析。通过这些研究,可以更好地了解如何在不同的情况下采取合适的避撞策略,以保障行车安全。
2025-09-05 09:02:50 1.65MB css3
1
ANSYS 网格划分详细介绍 ANSYS 网格划分是有限元分析中最关键的一个步骤,网格划分的好坏直接影响到解算的精度和速度。在 ANSYS 中,网格划分有三个步骤:定义单元属性、在几何模型上定义网格属性、划分网格。在这里,我们对网格划分这个步骤所涉及到的一些问题,尤其是与复杂模型相关的一些问题作简要阐述。 一、 自由网格划分 自由网格划分是自动化程度最高的网格划分技术之一,它在面上可以自动生成三角形或四边形网格,在体上自动生成四面体网格。通常情况下,可利用 ANSYS 的智能尺寸控制技术(SMARTSIZE 命令)来自动控制网格的大小和疏密分布,也可进行人工设置网格的大小(AESIZE、LESIZE、KESIZE、ESIZE 等系列命令)并控制疏密分布以及选择分网算法等(MOPT 命令)。对于复杂几何模型而言,这种分网方法省时省力,但缺点是单元数量通常会很大,计算效率降低。 同时,由于这种方法对于三维复杂模型只能生成四面体单元,为了获得较好的计算精度,建议采用二次四面体单元(92 号单元)。如果选用的是六面体单元,则此方法自动将六面体单元退化为阶次一致的四面体单元,因此,最好不要选用线性的六面体单元(没有中间节点,比如 45 号单元),因为该单元退化后为线性的四面体单元,具有过刚的刚度,计算精度较差;如果选用二次的六面体单元(比如 95 号单元),由于其是退化形式,节点数与其六面体原型单元一致,只是有多个节点在同一位置而已,因此,可以利用 TCHG 命令将模型中的退化形式的四面体单元变化为非退化的四面体单元,减少每个单元的节点数量,提高求解效率。 在有些情况下,必须要用六面体单元的退化形式来进行自由网格划分,比如,在进行混合网格划分(后面详述)时,只有用六面体单元才能形成金字塔过渡单元。对于计算流体力学和考虑集肤效应的电磁场分析而言,自由网格划分中的层网格功能(由 LESIZE 命令的 LAYER1 和 LAYER2 域控制)是非常有用的。 二、 映射网格划分 映射网格划分是对规整模型的一种规整网格划分方法,其原始概念是:对于面,只能是四边形面,网格划分数需在对边上保持一致,形成的单元全部为四边形;对于体,只能是六面体,对应线和面的网格划分数保持一致;形成的单元全部为六面体。在 ANSYS 中,这些条件有了很大的放宽,包括: 1. 面可以是三角形、四边形、或其它任意多边形。对于四边以上的多边形,必须用 LCCAT 命令将某些边联成一条边,以使得对于网格划分而言,仍然是三角形或四边形;或者用 AMAP 命令定义 3 到 4 个顶点(程序自动将两个顶点之间的所有线段联成一条)来进行映射划分。 2. 面上对边的网格划分数可以不同,但有一些限制条件。 3. 面上可以形成全三角形的映射网格。 4. 体可以是四面体、五面体、六面体或其它任意多面体。对于六面以上的多面体,必须用 ACCAT 命令将某些面联成一个面,以使得对于网格划分而言,仍然是四、五或六面体。 5. 体上对应线和面的网格划分数可以不同,但有一些限制条件。 对于三维复杂几何模型而言,通常的做法是利用 ANSYS 布尔运算功能,将其切割成一系列四、五或六面体,然后对这些切割好的体进行映射网格划分。当然,这种纯粹的映射划分方式比较烦琐,需要的时间和精力较多。 面三角形映射网格划分往往可以为体的自由网格划分服务,以使体的自由网格划分满足一些特定的要求,比如:体的某个狭长面的短边方向上要求一定要有一定层数的单元、某些位置的节点必须在一条直线上、等等。这种在进行体网格划分前在其面上先划分网格的方式对很多复杂模型可以进行良好的控制,但别忘了在体网格划分完毕后清除面网格(也可用专门用于辅助网格划分的虚拟单元类型-MESH200-来划分面网格,之后不用清除)。 三、 拖拉、扫略网格划分 对于由面经过拖拉、旋转、偏移(VDRAG、VROTAT、VOFFST、VEXT 等系列命令)等方式生成的复杂三维实体而言,可先在原始面上生成壳(或 MESH200)单元形式的面网格,然后在生成体的同时自动形成三维实体网格;对于已经形成好了的三维复杂实体,如果其在某个方向上的拓扑形式始终保持一致,则可用(人工或全自动)扫略网格划分(VSWEEP 命令)功能来划分网格;这两种方式形成的单元几乎都是六面体单元。 通常,采用扫略方式形成网格是一种非常好的方式,对于复杂几何实体,经过一些简单的切分处理,就可以自动形成规整的六面体网格,它比映射网格划分方式具有更大的优势和灵活性。 四、 混合网格划分 混合网格划分即在几何模型上,根据各部位的特点,分别采用自由、映射、扫略等多种网格划分方式,以适应不同模型的需求,如在某些部位需要高精度,某些部位需要快速计算等等。混合网格划分可以满足模型的不同需求,并且可以提高计算效率和精度。 ANSYS 网格划分有多种方法,可以根据模型的特点和需求选择不同的网格划分方式,以获得较好的计算精度和效率。
2025-08-22 10:55:44 32KB ansys
1