在数电实验二中,我们将深入探讨数字电子技术中的几个关键元件及其应用。这个实验主要涉及74LS138三线至八线译码器的功能测试,利用74LS138构建同相脉冲分配器,以及CC4511锁存器的测试与共阴极数码管的译码显示。 我们来看74LS138三线至八线译码器。这是一个常用的数字逻辑芯片,其主要任务是根据输入的三位二进制信号(A2, A1, A0)来解码出八个不同的输出线之一。当输入为有效低电平时,对应的输出线变为高电平。通过测试不同的输入组合,我们可以验证74LS138的正确工作情况,确保所有可能的输出状态都能按照预定规则切换。 接下来,我们利用74LS138来构建一个同相脉冲分配器。同相脉冲分配器的功能是将一个输入脉冲按照特定的顺序分配到多个输出端。在74LS138中,我们可以通过选择性地激活输出线,实现脉冲的有序分发。这在系统时序控制或者脉冲分配等场合有广泛应用。 然后是CC4511锁存器的测试。CC4511是一款集成了两个D型数据锁存器的芯片,它用于存储数据并在特定时钟信号的上升沿或下降沿进行数据切换。在实验中,我们需要通过输入数据和时钟信号来验证其数据保持和切换的特性,确保数据能在正确的时刻被稳定存储。 我们将CC4511与共阴极数码管结合,实现数字的译码显示。共阴极数码管是指其七个段a至g的阴极是公共的,当某段的阳极接高电平时,对应的段亮起。CC4511的输出可以驱动数码管的段驱动,通过编程控制CC4511的输出,就能显示0-9的任意数字。在这个过程中,我们需要理解数码管的显示原理,掌握如何将二进制或十进制数据转换成对应的段码,以及如何通过CC4511来驱动数码管。 通过这个实验,学生不仅可以掌握这些基础元件的工作原理,还能提升数字电路设计和故障排查的能力。同时,实验2的文件资源可以帮助我们更深入地理解和实践这些概念,通过实际操作来巩固理论知识,这对于学习数字电子技术至关重要。
2025-06-19 14:47:35 495KB 功能测试
1
对IP分配器ip地址的设置,主要用于立林tcp/ip门禁系统
2025-04-23 22:20:35 388KB ip分配器 l8门禁系统
1
图 7-15.16 路功率分配器的输入回波损耗图
2024-07-18 10:12:49 4.04MB awr使用
1
采用伙伴算法分配内存时,每次至少分配一个页面。但当请求分配的内存大小为几十个字节或几百个字节时应该如何处理?如何在一个页面中分配小的内存区,小内存区的分配所产生的内碎片又如何解决?Linux采用Slab。Linux所使用的slab分配器的基础是JeffBonwick 为SunOS操作系统首次引入的一种算法。Jeff的分配器是围绕对象缓存进行的。在内核中,会为有限的对象集(例如文件描述符和其他常见结构)分配大量内存。Jeff 发现对内核中普通对象进行初始化所需的时间超
2024-05-25 21:10:52 283KB
1
宏晶微的分配器方案,基于MS9334芯片,1进4出,1分4接口分配器,里面有原理图,PCB图,分享了拿走不谢!
2023-07-04 19:36:08 2.84MB MS9334
1
阻性功率分配器本质上是维持所有端口阻抗相同并把一个信号分配到多个端口的电阻分压器,它们没有端口间的隔离。换句话说,即使在理想的端口匹配条件下,到达一个端口的信号会出现在其他所有端口上。   图所示为一个“N”路功率分配器,其中, N=全部端口数-1   所有电阻都等于R,由下式计算:   式中,R。是所有端口的阻抗。   本质上阻性功率分配器的效率非常低。以dB表示的衰减是:   因此,一个两路功分器(三个端口,N=2)的功率衰减是6dB,一个四路功分器的功率衰减是12dB等。由于所有端口阻抗都匹配,电压衰减的dB数精确等于式(8.102)的结果。这个值也是端口之间的隔离度。
1
微带功率分配器设计 原理仅仅对功分器的传输进行了匹配,而每个 输出端口间并没有进行匹配,所以端口间没有隔离。为了实现隔离可以通过 输出路与路间的阻抗匹配(常称为隔离电阻)达到要求,那么下面采用奇、 偶模法来进行分析。
1
基于嵌入式设备的内存分配器实现,使用C/C++语言进行设计。
2022-12-06 18:02:31 3KB C/C++ 内存管理
1
堆栈分配器 使用 C++11 的简单堆栈分配器实现。 与 Visual Studio 2015、g++4.8 和 clang++3.4 兼容。 一个使用和文档的例子即将到来。
2022-11-10 21:25:10 15KB C++
1
好友分配器 用C ++编写的简单伙伴分配器
2022-10-25 08:31:40 2KB C++
1