采用粒子群算法进行寻优搜索,并对搜索结果进行显示。
2022-10-23 19:44:59 819B PSO 粒子群算法
1
针对利用粒子群优化算法进行多极值函数优化时存在早熟收敛和搜索效率低的问题,提出混合的PSO-BFGS算法,并增强了混合算法的变异能力使算法能逃出局部极值点。通过对三种Benchmark函数的测试结果表明,PSO-BFGS算法不仅具有有效的全局收敛性能,而且还具有较快的收敛速度,是求解最优化问题的一种有效算法。
2022-05-30 20:58:43 68KB 工程技术 论文
1

针对烟花算法(FA) 寻优过程中粒子间信息交流少、对最优点位置不在原点和原点附近的目标函数求解能力差的缺点, 提出带有引力搜索算子的烟花算法(FAGSO). 算子利用粒子间相互引力作用对粒子维度信息进行改善, 以提高算法的优化性能. 6 个标准和增加位置偏移测试函数的仿真结果表明, FAGSO相比于FA、粒子群算法和引力搜索算法, 在寻优速度和寻优精度方面有更好的优化性能.

1
针对传统遗传算法在函数优化过程中容易陷入局部最优解、收敛慢等缺点,提出了一种新的自适应遗传算法NAGA。该算法考虑了种群适应度的多种集中分散程度,并且非线性地自适应调节遗传算法的交叉概率与变异概率;为了加快寻优效率,在选择算子方面将引进的选择算子与最优保存策略相结合;为了使遗传操作过程中种群数量恒定,又提出了保留亲本的策略。通过仿真实验发现,与经典遗传算法GA和IAGA相比,改进的自适应遗传算法在收敛速度与精准度等方面都有较大的进步。
2021-07-29 18:12:06 1.31MB 函数优化 遗传算法 全局寻优
1
使用遗传算法,对目标函数进行全局寻优,可以得到全局最优解。
2019-12-21 18:54:46 2KB MATLAB 遗传算法
1