内容概要:本文复现了《含高比例可再生能源配电网灵活资源双层优化配置》中的运行-规划联合双层优化模型,以上层光伏与储能的选址定容、下层优化调度为核心,采用粒子群算法与多目标粒子群算法进行求解,并基于IEEE33节点系统在MATLAB平台完成仿真。通过kmeans聚类预处理数据,上层确定最佳位置与容量,下层以运行成本和电压偏移量为多目标函数,获取pareto前沿解集并反馈至顶层,实现协同优化。 适合人群:电力系统规划与运行领域的研究人员、具备一定MATLAB编程能力的电气工程专业学生及从事新能源并网技术开发的工程师。 使用场景及目标:①解决高比例可再生能源接入下配电网的稳定性与经济性问题;②为光伏与储能系统的规划提供科学的选址定容方法;③通过多目标优化实现运行调度与长期规划的联动设计。 阅读建议:建议结合Matpower工具箱进行代码实践,重点关注上下层模型的迭代逻辑与多目标优化结果的选择机制,同时可拓展至其他配电网测试系统以验证模型泛化能力。
2025-10-20 08:37:35 791KB
1
拉曼光纤放大器(RFA)具有宽的放大谱宽,中心波长随意和低的噪声指数,因此在大容量DWDM光传输系统和网络中起着重要作用[1,2]。RFA基于光纤中的受激拉曼散射(SRS),具有明显的阈值特点。采用模拟退火,实现在RFA中前向和反向多泵浦组合的一种新的可实用的优化设置方案。作为举例,用10个固态激光泵浦的64通道DWDM系统的RFA设置。在感兴趣的放大谱宽内增益不平度小于2.6dB。对于实际的信号通道数和增益曲线,该宾法可自动地产生设置。 拉曼光纤放大器(RFA)是现代大容量DWDM(密集波分复用)光传输系统中的关键组件,因为它提供了宽的放大谱宽、灵活的中心波长选择以及低噪声性能。RFA的工作原理基于光纤内的受激拉曼散射(SRS),这是一个有阈值效应的过程。随着固态激光泵浦技术的进步,尽管单个泵浦功率可以达到数百毫瓦,但在实际应用中,仍需多个泵浦激光器通过偏振复用来提供足够的光功率,以实现DWDM信号的高增益放大并保持增益平坦。 在RFA中,多泵浦配置的优化是至关重要的,因为它涉及到多个因素,如泵浦功率分配、波长选择以及泵浦和信号之间的相互作用。由于SRS过程的复杂性,传统的解析方法难以准确描述多泵浦系统的优化。为了解决这个问题,模拟退火(SA)算法被引入。SA是一种全局优化方法,尤其适用于解决具有多个局部最优解的问题,它通过模拟物质冷却过程来逐步逼近全局最优解。 在前向和反向多泵浦RFA的理论模型中,一组耦合方程描述了泵浦和信号光之间的相互作用。这些方程考虑了前向泵浦(泵浦在起点)和反向泵浦(泵浦在光纤末端)的情况,并涵盖了各种类型的串扰,包括泵浦排空和泵浦互作用等现象。优化过程涉及到在保证信号增益和系统性能的同时,合理配置泵浦的功率和波长。 在具体实施过程中,通过SA算法,每个泵浦的波长和功率会在一定的概率分布下进行随机调整,类似于物质冷却过程中的原子位移。如果新的配置能导致能量(这里可以理解为增益性能)的降低,那么这个配置就可能被接受,即使这个变化是微小的。通过逐步降低“温度”(方差),算法会收敛到一个满意的解决方案,即最优的泵浦配置。 以一个64通道DWDM系统的示例为例,使用5个连续工作的泵浦,每个泵浦功率为250mW,通过优化配置,可以实现增益不平度小于2.6dB的性能。这个过程不仅考虑了信号增益,还考虑了光纤长度、拉曼增益系数、光纤损耗等因素。 多泵浦功率多波长优化配置对于提高拉曼光纤放大器的性能至关重要,尤其是在大容量光通信网络中。利用模拟退火算法进行优化,能够自动产生适应不同实际需求的泵浦设置,从而实现最佳的信号放大效果和系统的稳定性。
2025-09-09 15:51:42 31KB 职场管理
1
内容概要:本文聚焦于城市化进程中的交通拥堵问题,特别是拥有知名景区的小镇,提出了基于遗传算法的交通流量管控与评价的研究。文章详细探讨了如何通过数据挖掘、K-means聚类算法和遗传优化算法,结合车辆行驶行为特征,对小镇景区路网的信号灯进行优化配置,估算临时停车位需求,并评价临时管控措施的效果。具体而言,文章通过四个主要问题展开讨论:1)利用K-means聚类算法对车流量进行时段划分并估计各相位车流量;2)使用遗传算法优化信号灯配置,以提高车辆通过率;3)分析五一黄金周期间巡游车辆特征,估算临时停车位需求;4)通过路段平均通过时长评价临时管控措施的效果,结果显示管控后车流量平均速度显著提高,重度拥堵时长减少了25.7%。 适合人群:从事交通工程、城市规划、数据科学等相关领域的研究人员和技术人员,尤其是关注智能交通系统的专业人士。 使用场景及目标:1)帮助城市管理者制定有效的交通管控策略,尤其是在旅游景区等高流量区域;2)提供一种基于遗传算法的信号灯优化配置方法,以提高道路通行效率;3)为临时停车位的需求预测提供科学依据,确保游客出行顺畅;4)评估临时交通管控措施的效果,为未来政策制定提供参考。 其他说明:本文不仅提供了详细的算法实现步骤,还展示了具体的实验结果和数据分析,证明了所提出方法的有效性和实用性。文中提到的模型和算法具有较高的推广价值,可以在类似的城市交通管理和优化项目中广泛应用。此外,文章指出了现有模型的一些局限性,如K-means算法的参数敏感性和遗传算法的收敛速度问题,并提出了相应的改进建议。
1
MATLAB代码:基于粒子群算法的储能优化配置(可加入风光机组) 关键词:储能优化配置 粒子群 储能充放电优化 参考文档:无明显参考文档,仅有几篇文献可以适当参考 仿真平台:MATLAB 平台采用粒子群实现求解 优势:代码注释详实,适合参考学习,非目前烂大街的版本,程序非常精品,请仔细辨识 主要内容:建立了储能的成本模型,包含运行维护成本以及容量配置成本,然后以该成本函数最小为目标函数,经过粒子群算法求解出其最优运行计划,并通过其运行计划最终确定储能容量配置的大小,求解采用的是PSO算法(粒子群算法)。
2025-07-14 18:17:55 283KB 柔性数组
1
配电网光伏储能双层优化配置模型(选址定容) 配电网光伏储能双层优化配置模型(选址定容),还可以送matpower 关键词:选址定容 配电网 光伏储能 双层优化 粒子群算法 多目标粒子群算法 kmeans聚类 仿真平台:matlab 参考文档:《含高比例可再生能源配电网灵活资源双层优化配置》 主要内容:该程序主要方法复现《含高比例可再生能源配电网灵活资源双层优化配置》运行-规划联合双层配置模型,上层为光伏、储能选址定容模型,即优化配置,下层考虑弃光和储能出力,即优化调度,模型以IEEE33节点为例,采用粒子群算法求解,下层模型为运行成本和电压偏移量的多目标模型,并采用多目标粒子群算法得到pareto前沿解集,从中选择最佳结果带入到上层模型,最终实现上下层模型的各自求解和整个模型迭代优化。
2025-05-21 10:50:18 267KB
1
直流电机双闭环调速系统Matlab Simulink仿真模型:内外环PI调节器的精准构建与运行完美实现,直流电机双闭环调速系统Matlab Simulink仿真模型:内外环PI调节器优化配置与仿真结果完美呈现,直流电机双闭环调速系统仿真模型 转速电流双闭环调速系统Matlab Simulink仿真模型。 内外环均采用PI调节器,本模型具体直流电机模块、三相电源、同步6脉冲触发器、双闭环、负载、示波器模块搭建。 所有参数都已经调试好了,仿真波形完美,可以直接运行出波形。 可以按照你的Matlab版本转,确保无论哪个版本的软件都可以打开运行。 另外附赠一个13页的说明文档,包含PI参数计算、仿真波形分析、原理分析等内容齐全。 ,直流电机; 双闭环调速系统; Matlab Simulink仿真模型; PI调节器; 参数调试; 仿真波形; 版本兼容; 说明文档,直流电机双闭环调速系统Matlab Simulink模型
2025-04-26 20:10:20 1.04MB safari
1
基于粒子群算法的储能优化配置:成本模型分析与最优运行计划求解,基于粒子群算法的储能优化配置:成本模型与最优运行计划求解,MATLAB代码:基于粒子群算法的储能优化配置 关键词:储能优化配置 粒子群 储能充放电优化 参考文档:无明显参考文档,仅有几篇文献可以适当参考 仿真平台:MATLAB 平台采用粒子群实现求解 优势:代码注释详实,适合参考学习,非目前烂大街的版本,程序非常精品,请仔细辨识 主要内容:建立了储能的成本模型,包含运行维护成本以及容量配置成本,然后以该成本函数最小为目标函数,经过粒子群算法求解出其最优运行计划,并通过其运行计划最终确定储能容量配置的大小,求解采用的是PSO算法(粒子群算法),求解效果极佳,具体可以看图 代码属于精品代码 ,关键词:MATLAB代码;储能优化配置;粒子群算法;PSO算法;充放电优化;成本模型;运行计划;容量配置成本;优化求解。,基于MATLAB的PSO算法储能优化配置与充放电策略研究
2025-04-09 13:17:28 1.64MB
1
MATLAB代码:基于雨流计数法的源-荷-储双层协同优化配置 关键词:双层规划 雨流计算法 储能优化配置 参考文档:《储能系统容量优化配置及全寿命周期经济性评估方法研究》第三章 仿真平台:MATLAB CPLEX 主要内容:代码主要做的是一个源荷储优化配置的问题,采用双层优化,外层优化目标的求解依赖于内层优化的储能系统充放电曲线,基于储能系统充放电曲线,采用雨流计数法电池健康状态数学模型,对决策变量储能功率和容量的储能系统寿命年限进行评估;内层储能系统充放电曲线的优化受外层储能功率和容量决策变量的影响,不同的功率和容量下,储能装置的优化充放电功率曲线存在差异。
2024-10-23 14:49:11 342KB matlab
1
MATLAB代码:基于粒子群算法的储能优化配置 关键词:储能优化配置 粒子群 储能充放电优化 参考文档:无明显参考文档,仅有几篇文献可以适当参考 仿真平台:MATLAB 平台采用粒子群实现求解 优势:代码注释详实,适合参考学习,非目前烂大街的版本,程序非常精品,请仔细辨识 主要内容:建立了储能的成本模型,包含运行维护成本以及容量配置成本,然后以该成本函数最小为目标函数,经过粒子群算法求解出其最优运行计划,并通过其运行计划最终确定储能容量配置的大小,求解采用的是PSO算法(粒子群算法),求解效果极佳,具体可以看图 这段程序主要是一个粒子群优化算法,用于解决电力系统潮流计算问题。下面我将对程序进行详细的分析和解释。 首先,程序开始时进行了一些初始化操作,包括清除变量、设置最大迭代次数、搜索空间维数、粒子个数等。然后,加载了一个名为"load.txt"的文件,将文件中的数据除以100000并赋值给变量Pload。 接下来,使用两个嵌套的for循环初始化粒子的速度和位置。速度v和位置x都是一个N行D列的矩阵,其中N为粒子个数,D为搜索空间维数。每个粒子的速度和位置都是随机生成的,位
2024-06-25 10:33:04 294KB matlab
1
针对风光蓄互补发电系统,提出一种改进的容量优化配置方法,考虑独立和并网两种模式,对风力发电、光伏发电和蓄电池的容量进行最优配置。该方法充分利用风光互补特性,在系统独立运行时,只需较小的蓄电池容量即可保证高供电可靠性,并可减少蓄电池的充放电次数和放电深度;在系统并网运行时,进一步提出采用分时段优化策略来配置所需蓄电池的容量,保证负荷供电需求和入网功率的波动特性满足要求。算例验证了所提改进优化方法的合理性和优越性。
2024-06-10 12:17:17 748KB 容量优化
1